GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, Vol. 119, No. 10 ( 2022-03-08)
    Abstract: Aerosol–cloud interaction (ACI) is complex and difficult to be well represented in current climate models. Progress on understanding ACI processes, such as the influence of aerosols on water cloud droplet formation, is hampered by inadequate observational capability. Hitherto, high-resolution and simultaneous observations of diurnal aerosol loading and cloud microphysical properties are challenging for current remote-sensing techniques. To overcome this conundrum, we introduce the dual-field-of-view (FOV) high-spectral-resolution lidar (HSRL) for simultaneously profiling aerosol and water cloud properties, especially water cloud microphysical properties. Continuous observations of aerosols and clouds using this instrument, verified by the Monte Carlo simulation and coincident observations of other techniques, were conducted to investigate the interactions between aerosol loading and water cloud microphysical properties. A case study over Beijing highlights the scientific potential of dual-FOV HSRL to become a significant contributor to the ACI investigations. The observed water cloud profiles identify that due to air entrainment its vertical structure is not perfectly adiabatic, as assumed by many current retrieval methods. Our ACI analysis shows increased aerosol loading led to increased droplet number concentration and decreased droplet effective radius—consistent with expectations—but had no discernible increase on liquid water path. This finding supports the hypothesis that aerosol-induced cloud water increase caused by suppressed rain formation can be canceled out by enhanced evaporation. Thus, these observations obtained from the dual-FOV HSRL constitute substantial and significant additions to understanding ACI process. This technique is expected to represent a significant step forward in characterizing ACI.
    Type of Medium: Online Resource
    ISSN: 0027-8424 , 1091-6490
    RVK:
    RVK:
    Language: English
    Publisher: Proceedings of the National Academy of Sciences
    Publication Date: 2022
    detail.hit.zdb_id: 209104-5
    detail.hit.zdb_id: 1461794-8
    SSG: 11
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Science, American Association for the Advancement of Science (AAAS), Vol. 377, No. 6604 ( 2022-07-22)
    Abstract: Rapid population growth, rising meat consumption, and the expanding use of crops for nonfood and nonfeed purposes increase the pressure on global food production. At the same time, the excessive use of nitrogen fertilizer to enhance agricultural production poses serious threats to both human health and the environment. To achieve the required yield increases and make agriculture more sustainable, intensified breeding and genetic engineering efforts are needed to obtain new crop varieties with higher photosynthetic capacity and improved nitrogen use efficiency (NUE). However, progress has been slow, largely due to the limited knowledge about regulator genes that potentially can coordinately optimize carbon assimilation and nitrogen utilization. RATIONALE Transcription factors control diverse biological processes by binding to the promoters (or intragenic regions) of target genes, and a number of transcription factors have been identified that control carbon fixation and nitrogen assimilation. A previous comparative analysis of maize and rice leaf transcriptomes and metabolomes revealed a set of 118 candidate transcription factors that may act as regulators of C 4 photosynthesis. We screened these transcription factors for their responsiveness to light and nitrogen supply in rice, and found that the gene Dehydration-Responsive Element-Binding Protein 1C ( OsDREB1C ), a member of the APETALA2/ethylene-responsive element binding factor (AP2/ERF) family, exhibits properties expected of a regulator that can simultaneously modulate photosynthesis and nitrogen utilization. RESULTS OsDREB1C expression is induced in rice by both light and low-nitrogen status. We generated overexpression lines ( OsDREB1C -OE) and knockout mutants ( OsDREB1C -KO) in rice, and conducted field trials in northern, southeastern, and southern China from 2018 to 2021. OsDREB1C -OE plants exhibited 41.3 to 68.3% higher yield than wild-type (WT) plants due to increased grain number per panicle, elevated grain weight, and enhanced harvest index. We observed that light-induced growth promotion of OsDREB1C -OE plants was accompanied by enhanced photosynthetic capacity and concomitant increases in photosynthetic assimilates. In addition, 15 N feeding experiments and field studies with different nitrogen fertilization regimes revealed that NUE was improved in OsDREB1C- OE plants due to elevated nitrogen uptake and transport activity. Moreover, OsDREB1C overexpression led to more efficient carbon and nitrogen allocation from source to sink, thus boosting grain yield, particularly under low-nitrogen conditions. Additionally, the OsDREB1C -OE plants flowered 13 to 19 days earlier and accumulated higher biomass at the heading stage than WT plants under long-day conditions. OsDREB1C is localized in the nucleus and the cytosol and functions as a transcriptional activator that directly binds to cis elements in the DNA, including dehydration-responsive element (DRE)/C repeat (CRT), GCC, and G boxes. Chromatin immunoprecipitation sequencing (ChIP-seq) and transcriptomic analyses identified a total of 9735 putative OsDREB1C-binding sites at the genome-wide level. We discovered that five genes targeted by OsDREB1C [ ribulose-l,5-bisphosphate carboxylase/oxygenase small subunit 3 ( OsRBCS3 ), nitrate reductase 2 ( OsNR2 ), nitrate transporter 2.4 ( OsNRT2.4 ), nitrate transporter 1.1B ( OsNRT1.1B ), and flowering locus T-like 1 ( OsFTL1 )] are closely associated with photosynthesis, nitrogen utilization, and flowering, the key traits altered by OsDREB1C overexpression. ChIP-quantitative polymerase chain reaction (ChIP-qPCR) and DNA affinity purification sequencing (DAP-seq) assays confirmed that OsDREB1C activates the transcription of these genes by binding to the promoter of OsRBCS3 and to exons of OsNR2 , OsNRT2.4 , OsNRT1.1B , and OsFTL1 . By showing that biomass and yield increases can also be achieved by OsDREB1C overexpression in wheat and Arabidopsis , we have demonstrated that the mode of action and the biological function of the transcription factor are evolutionarily conserved. CONCLUSION Overexpression of OsDREB1C not only boosts grain yields but also confers higher NUE and early flowering. Our work demonstrates that by genetically modulating the expression of a single transcriptional regulator gene, substantial yield increases can be achieved while the growth duration of the crop is shortened. The existing natural allelic variation in OsDREB1C , the highly conserved function of the transcription factor in seed plants, and the ease with which its expression can be altered by genetic engineering suggest that this gene could be the target of future crop improvement strategies toward more efficient and more sustainable food production. OsDREB1C coordinates yield and growth duration. OsDREB1C was identified by its responsiveness to light and low nitrogen in a screen of 118 transcription factors related to C 4 photosynthesis. Transcriptional activation of multiple downstream target genes by OsDREB1C confers enhanced photosynthesis, improved nitrogen utilization, and early flowering. Together, the activated genes cause substantial yield increases in rice and wheat.
    Type of Medium: Online Resource
    ISSN: 0036-8075 , 1095-9203
    RVK:
    RVK:
    Language: English
    Publisher: American Association for the Advancement of Science (AAAS)
    Publication Date: 2022
    detail.hit.zdb_id: 128410-1
    detail.hit.zdb_id: 2066996-3
    detail.hit.zdb_id: 2060783-0
    SSG: 11
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, Vol. 118, No. 46 ( 2021-11-16)
    Abstract: Chronic infection with liver flukes (such as Clonorchis sinensis ) can induce severe biliary injuries, which can cause cholangitis, biliary fibrosis, and even cholangiocarcinoma. The release of extracellular vesicles by C. sinensis (CsEVs) is of importance in the long-distance communication between the hosts and worms. However, the biological effects of EVs from liver fluke on biliary injuries and the underlying molecular mechanisms remain poorly characterized. In the present study, we found that CsEVs induced M1-like activation. In addition, the mice that were administrated with CsEVs showed severe biliary injuries associated with remarkable activation of M1-like macrophages. We further characterized the signatures of miRNAs packaged in CsEVs and identified a miRNA Csi-let-7a-5p, which was highly enriched. Further study showed that Csi-let-7a-5p facilitated the activation of M1-like macrophages by targeting Socs1 and Clec7a ; however, CsEVs with silencing Csi-let-7a-5p showed a decrease in proinflammatory responses and biliary injuries, which involved in the Socs1- and Clec7a -regulated NF-κB signaling pathway. Our study demonstrates that Csi-let-7a-5p delivered by CsEVs plays a critical role in the activation of M1-like macrophages and contributes to the biliary injuries by targeting the Socs1- and Clec7a -mediated NF-κB signaling pathway, which indicates a mechanism contributing to biliary injuries caused by fluke infection. However, molecules other than Csi-let-7a-5p from CsEVs that may also promote M1-like polarization and exacerbate biliary injuries are not excluded.
    Type of Medium: Online Resource
    ISSN: 0027-8424 , 1091-6490
    RVK:
    RVK:
    Language: English
    Publisher: Proceedings of the National Academy of Sciences
    Publication Date: 2021
    detail.hit.zdb_id: 209104-5
    detail.hit.zdb_id: 1461794-8
    SSG: 11
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Online Resource
    Online Resource
    Proceedings of the National Academy of Sciences ; 2013
    In:  Proceedings of the National Academy of Sciences Vol. 110, No. 38 ( 2013-09-17), p. 15395-15400
    In: Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, Vol. 110, No. 38 ( 2013-09-17), p. 15395-15400
    Abstract: Transcriptional profiling is a useful strategy to study development and disease. Approaches to isolate RNA from specific cell types, or from specific cellular compartments, would extend the power of this strategy. Previous work has shown that isolation of genetically tagged ribosomes (translating ribosome affinity purification; TRAP) is an effective means to isolate ribosome-bound RNA selectively from transgene-expressing cells. However, widespread application of this technology has been limited by available transgenic mouse lines. Here we characterize a TRAP allele (Rosa26 fsTRAP ) that makes this approach more widely accessible. We show that endothelium-specific activation of Rosa26 fsTRAP identifies endothelial cell-enriched transcripts, and that cardiomyocyte-restricted TRAP is a useful means to identify genes that are differentially expressed in cardiomyocytes in a disease model. Furthermore, we show that TRAP is an effective means for studying translational regulation, and that several nuclear-encoded mitochondrial genes are under strong translational control. Our analysis of ribosome-bound transcripts also shows that a subset of long intergenic noncoding RNAs are weakly ribosome-bound, but that the majority of noncoding RNAs, including most long intergenic noncoding RNAs, are ribosome-bound to the same extent as coding transcripts. Together, these data show that the TRAP strategy and the Rosa26 fsTRAP allele will be useful tools to probe cell type-specific transcriptomes, study translational regulation, and probe ribosome binding of noncoding RNAs.
    Type of Medium: Online Resource
    ISSN: 0027-8424 , 1091-6490
    RVK:
    RVK:
    Language: English
    Publisher: Proceedings of the National Academy of Sciences
    Publication Date: 2013
    detail.hit.zdb_id: 209104-5
    detail.hit.zdb_id: 1461794-8
    SSG: 11
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Online Resource
    Online Resource
    Proceedings of the National Academy of Sciences ; 2015
    In:  Proceedings of the National Academy of Sciences Vol. 112, No. 16 ( 2015-04-21), p. 5225-5230
    In: Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, Vol. 112, No. 16 ( 2015-04-21), p. 5225-5230
    Abstract: Alzheimer’s disease (AD) is one of most devastating diseases affecting elderly people. Amyloid-β (Aβ) accumulation and the downstream pathological events such as oxidative stress play critical roles in pathogenesis of AD. Lessons from failures of current clinical trials suggest that targeting multiple key pathways of the AD pathogenesis is necessary to halt the disease progression. Here we show that Edaravone, a free radical scavenger that is marketed for acute ischemic stroke, has a potent capacity of inhibiting Aβ aggregation and attenuating Aβ-induced oxidation in vitro. When given before or after the onset of Aβ deposition via i.p. injection, Edaravone substantially reduces Aβ deposition, alleviates oxidative stress, attenuates the downstream pathologies including Tau hyperphosphorylation, glial activation, neuroinflammation, neuronal loss, synaptic dysfunction, and rescues the behavioral deficits of APPswe/PS1 mice. Oral administration of Edaravone also ameliorates the AD-like pathologies and memory deficits of the mice. These findings suggest that Edaravone holds a promise as a therapeutic agent for AD by targeting multiple key pathways of the disease pathogenesis.
    Type of Medium: Online Resource
    ISSN: 0027-8424 , 1091-6490
    RVK:
    RVK:
    Language: English
    Publisher: Proceedings of the National Academy of Sciences
    Publication Date: 2015
    detail.hit.zdb_id: 209104-5
    detail.hit.zdb_id: 1461794-8
    SSG: 11
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    In: Brain, Oxford University Press (OUP), Vol. 141, No. 10 ( 2018-10-01), p. e75-e75
    Type of Medium: Online Resource
    ISSN: 0006-8950 , 1460-2156
    RVK:
    Language: English
    Publisher: Oxford University Press (OUP)
    Publication Date: 2018
    detail.hit.zdb_id: 1474117-9
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Online Resource
    Online Resource
    Proceedings of the National Academy of Sciences ; 2015
    In:  Proceedings of the National Academy of Sciences Vol. 112, No. 51 ( 2015-12-22), p. 15666-15671
    In: Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, Vol. 112, No. 51 ( 2015-12-22), p. 15666-15671
    Abstract: Protein palmitoylation regulates many aspects of cell function and is carried out by acyl transferases that contain zf -DHHC motifs. The in vivo physiological function of protein palmitoylation is largely unknown. Here we generated mice deficient in the acyl transferase A ph2 (Ablphilin 2 or zf-DHHC16 ) and demonstrated an essential role for Aph2 in embryonic/postnatal survival, eye development, and heart development. Aph2 −/− embryos and pups showed cardiomyopathy and cardiac defects including bradycardia. We identified phospholamban, a protein often associated with human cardiomyopathy, as an interacting partner and a substrate of Aph2. Aph2-mediated palmitoylation of phospholamban on cysteine 36 differentially alters its interaction with PKA and protein phosphatase 1 α, augmenting serine 16 phosphorylation, and regulates phospholamban pentamer formation. Aph2 deficiency results in phospholamban hypophosphorylation, a hyperinhibitory form. Ablation of phospholamban in Aph2 −/− mice histologically and functionally alleviated the heart defects. These findings establish Aph2 as a critical in vivo regulator of cardiac function and reveal roles for protein palmitoylation in the development of other organs including eyes.
    Type of Medium: Online Resource
    ISSN: 0027-8424 , 1091-6490
    RVK:
    RVK:
    Language: English
    Publisher: Proceedings of the National Academy of Sciences
    Publication Date: 2015
    detail.hit.zdb_id: 209104-5
    detail.hit.zdb_id: 1461794-8
    SSG: 11
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Online Resource
    Online Resource
    Proceedings of the National Academy of Sciences ; 2018
    In:  Proceedings of the National Academy of Sciences Vol. 115, No. 32 ( 2018-08-07)
    In: Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, Vol. 115, No. 32 ( 2018-08-07)
    Abstract: Repeated artificial selection of a complex trait facilitates the identification of genes underlying the trait, especially if multiple selected descendant lines are available. Here we developed a pedigree-based approach to identify genes underlying the Green Revolution (GR) phenotype. From a pedigree analysis, we selected 30 cultivars including the “miracle rice” IR8, a GR landmark, its ancestors and descendants, and also other related cultivars for identifying high-yield genes. Through sequencing of these genomes, we identified 28 ancestral chromosomal blocks that were maintained in all the high-yield cultivars under study. In these blocks, we identified six genes of known function, including the GR gene sd1 , and 123 loci with genes of unknown function. We randomly selected 57 genes from the 123 loci for knockout or knockdown studies and found that a high proportion of these genes are essential or have phenotypic effects related to rice production. Notably, knockout lines have significant changes in plant height ( P 〈 0.003), a key GR trait, compared with wild-type lines. Some gene knockouts or knockdowns were especially interesting. For example, knockout of Os10g0555100, a putative glucosyltransferase gene, showed both reduced growth and altered panicle architecture. In addition, we found that in some retained chromosome blocks several GR-related genes were clustered, although they have unrelated sequences, suggesting clustering of genes with similar functions. In conclusion, we have identified many high-yield genes in rice. Our method provides a powerful means to identify genes associated with a specific trait.
    Type of Medium: Online Resource
    ISSN: 0027-8424 , 1091-6490
    RVK:
    RVK:
    Language: English
    Publisher: Proceedings of the National Academy of Sciences
    Publication Date: 2018
    detail.hit.zdb_id: 209104-5
    detail.hit.zdb_id: 1461794-8
    SSG: 11
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Online Resource
    Online Resource
    Proceedings of the National Academy of Sciences ; 2019
    In:  Proceedings of the National Academy of Sciences Vol. 116, No. 15 ( 2019-04-09), p. 7549-7558
    In: Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, Vol. 116, No. 15 ( 2019-04-09), p. 7549-7558
    Abstract: Proteins of the ARGONAUTE (AGO) family function in the epigenetic regulation of gene expression. Although the rice ( Oryza sativa ) genome encodes 19 predicted AGO proteins, few of their functions have thus far been characterized. Here, we show that the AGO protein OsAGO2 regulates anther development in rice. OsAGO2 was highly expressed in anthers. Knockdown of OsAGO2 led to the overaccumulation of reactive oxygen species (ROS) and abnormal anther development, causing premature initiation of tapetal programmed cell death (PCD) and pollen abortion. The expression level of Hexokinase 1 ( OsHXK1 ) increased significantly, and the methylation levels of its promoter decreased, in plants with knocked-down OsAGO2 expression. Overexpression of OsHXK1 also resulted in the overaccumulation of ROS, premature initiation of PCD, and pollen abortion. Moreover, knockdown of OsHXK1 restored pollen fertility in OsAGO2 knockdown plants. Chromatin immunoprecipitation assays demonstrated that OsAGO2 binds directly to the OsHXK1 promoter region, suggesting that OsHXK1 is a target gene of OsAGO2. These results indicate that OsHXK1 controls the appropriate production of ROS and the proper timing of tapetal PCD and is directly regulated by OsAGO2 through epigenetic regulation.
    Type of Medium: Online Resource
    ISSN: 0027-8424 , 1091-6490
    RVK:
    RVK:
    Language: English
    Publisher: Proceedings of the National Academy of Sciences
    Publication Date: 2019
    detail.hit.zdb_id: 209104-5
    detail.hit.zdb_id: 1461794-8
    SSG: 11
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    In: Brain, Oxford University Press (OUP), Vol. 144, No. 2 ( 2021-03-03), p. 601-614
    Abstract: Oculopharyngodistal myopathy is a late-onset degenerative muscle disorder characterized by ptosis and weakness of the facial, pharyngeal, and distal limb muscles. A recent report suggested a non-coding trinucleotide repeat expansion in LRP12 to be associated with the disease. Here we report a genetic study in a Chinese cohort of 41 patients with the clinical diagnosis of oculopharyngodistal myopathy (21 cases from seven families and 20 sporadic cases). In a large family with 12 affected individuals, combined haplotype and linkage analysis revealed a maximum two-point logarithm of the odds (LOD) score of 3.3 in chromosomal region chr19p13.11-p13.2 and narrowed the candidate region to an interval of 4.5 Mb. Using a comprehensive strategy combining whole-exome sequencing, long-read sequencing, repeat-primed polymerase chain reaction and GC-rich polymerase chain reaction, we identified an abnormal CGG repeat expansion in the 5′ UTR of the GIPC1 gene that co-segregated with disease. Overall, the repeat expansion in GIPC1 was identified in 51.9% independent pedigrees (4/7 families and 10/20 sporadic cases), while the repeat expansion in LRP12 was only identified in one sporadic case (3.7%) in our cohort. The number of CGG repeats was & lt;30 in controls but & gt;60 in affected individuals. There was a slight correlation between repeat size and the age at onset. Both repeat expansion and retraction were observed during transmission but somatic instability was not evident. These results further support that non-coding CGG repeat expansion plays an essential role in the pathogenesis of oculopharyngodistal myopathy.
    Type of Medium: Online Resource
    ISSN: 0006-8950 , 1460-2156
    RVK:
    Language: English
    Publisher: Oxford University Press (OUP)
    Publication Date: 2021
    detail.hit.zdb_id: 1474117-9
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...