GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    American Association for the Advancement of Science (AAAS) ; 2017
    In:  Science Vol. 355, No. 6329 ( 2017-03-10)
    In: Science, American Association for the Advancement of Science (AAAS), Vol. 355, No. 6329 ( 2017-03-10)
    Abstract: Perfect matching of an assembled physical sequence to a specified designed sequence is crucial to verify design principles in genome synthesis. We designed and de novo synthesized 536,024–base pair chromosome synV in the “Build-A-Genome China” course. We corrected an initial isolate of synV to perfectly match the designed sequence using integrative cotransformation and clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9)–mediated editing in 22 steps; synV strains exhibit high fitness under a variety of culture conditions, compared with that of wild-type V strains. A ring synV derivative was constructed, which is fully functional in Saccharomyces cerevisiae under all conditions tested and exhibits lower spore viability during meiosis. Ring synV chromosome can extends Sc2.0 design principles and provides a model with which to study genomic rearrangement, ring chromosome evolution, and human ring chromosome disorders.
    Type of Medium: Online Resource
    ISSN: 0036-8075 , 1095-9203
    RVK:
    RVK:
    Language: English
    Publisher: American Association for the Advancement of Science (AAAS)
    Publication Date: 2017
    detail.hit.zdb_id: 128410-1
    detail.hit.zdb_id: 2066996-3
    detail.hit.zdb_id: 2060783-0
    SSG: 11
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, Vol. 117, No. 5 ( 2020-02-04), p. 2560-2569
    Abstract: De novo mutations (DNMs), or mutations that appear in an individual despite not being seen in their parents, are an important source of genetic variation whose impact is relevant to studies of human evolution, genetics, and disease. Utilizing high-coverage whole-genome sequencing data as part of the Trans-Omics for Precision Medicine (TOPMed) Program, we called 93,325 single-nucleotide DNMs across 1,465 trios from an array of diverse human populations, and used them to directly estimate and analyze DNM counts, rates, and spectra. We find a significant positive correlation between local recombination rate and local DNM rate, and that DNM rate explains a substantial portion (8.98 to 34.92%, depending on the model) of the genome-wide variation in population-level genetic variation from 41K unrelated TOPMed samples. Genome-wide heterozygosity does correlate with DNM rate, but only explains 〈 1% of variation. While we are underpowered to see small differences, we do not find significant differences in DNM rate between individuals of European, African, and Latino ancestry, nor across ancestrally distinct segments within admixed individuals. However, we did find significantly fewer DNMs in Amish individuals, even when compared with other Europeans, and even after accounting for parental age and sequencing center. Specifically, we found significant reductions in the number of C→A and T→C mutations in the Amish, which seem to underpin their overall reduction in DNMs. Finally, we calculated near-zero estimates of narrow sense heritability ( h 2 ), which suggest that variation in DNM rate is significantly shaped by nonadditive genetic effects and the environment.
    Type of Medium: Online Resource
    ISSN: 0027-8424 , 1091-6490
    RVK:
    RVK:
    Language: English
    Publisher: Proceedings of the National Academy of Sciences
    Publication Date: 2020
    detail.hit.zdb_id: 209104-5
    detail.hit.zdb_id: 1461794-8
    SSG: 11
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Science, American Association for the Advancement of Science (AAAS), Vol. 291, No. 5507 ( 2001-02-16), p. 1304-1351
    Abstract: A 2.91-billion base pair (bp) consensus sequence of the euchromatic portion of the human genome was generated by the whole-genome shotgun sequencing method. The 14.8-billion bp DNA sequence was generated over 9 months from 27,271,853 high-quality sequence reads (5.11-fold coverage of the genome) from both ends of plasmid clones made from the DNA of five individuals. Two assembly strategies—a whole-genome assembly and a regional chromosome assembly—were used, each combining sequence data from Celera and the publicly funded genome effort. The public data were shredded into 550-bp segments to create a 2.9-fold coverage of those genome regions that had been sequenced, without including biases inherent in the cloning and assembly procedure used by the publicly funded group. This brought the effective coverage in the assemblies to eightfold, reducing the number and size of gaps in the final assembly over what would be obtained with 5.11-fold coverage. The two assembly strategies yielded very similar results that largely agree with independent mapping data. The assemblies effectively cover the euchromatic regions of the human chromosomes. More than 90% of the genome is in scaffold assemblies of 100,000 bp or more, and 25% of the genome is in scaffolds of 10 million bp or larger. Analysis of the genome sequence revealed 26,588 protein-encoding transcripts for which there was strong corroborating evidence and an additional ∼12,000 computationally derived genes with mouse matches or other weak supporting evidence. Although gene-dense clusters are obvious, almost half the genes are dispersed in low G+C sequence separated by large tracts of apparently noncoding sequence. Only 1.1% of the genome is spanned by exons, whereas 24% is in introns, with 75% of the genome being intergenic DNA. Duplications of segmental blocks, ranging in size up to chromosomal lengths, are abundant throughout the genome and reveal a complex evolutionary history. Comparative genomic analysis indicates vertebrate expansions of genes associated with neuronal function, with tissue-specific developmental regulation, and with the hemostasis and immune systems. DNA sequence comparisons between the consensus sequence and publicly funded genome data provided locations of 2.1 million single-nucleotide polymorphisms (SNPs). A random pair of human haploid genomes differed at a rate of 1 bp per 1250 on average, but there was marked heterogeneity in the level of polymorphism across the genome. Less than 1% of all SNPs resulted in variation in proteins, but the task of determining which SNPs have functional consequences remains an open challenge.
    Type of Medium: Online Resource
    ISSN: 0036-8075 , 1095-9203
    RVK:
    RVK:
    Language: English
    Publisher: American Association for the Advancement of Science (AAAS)
    Publication Date: 2001
    detail.hit.zdb_id: 128410-1
    detail.hit.zdb_id: 2066996-3
    detail.hit.zdb_id: 2060783-0
    SSG: 11
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: Science, American Association for the Advancement of Science (AAAS), Vol. 379, No. 6637 ( 2023-03-17)
    Abstract: Autoimmune diseases such as ankylosing spondylitis (AS) can be caused by emerging neoantigens that break immune tolerance in humans. Posttranslational modifications (PTMs) have been shown to be a critical mechanism that alters protein structure and function to generate neoantigens and induce subsequent autoimmune responses. Previous studies have confirmed that citrulline-modified peptides are a critical source of neoantigens in rheumatoid arthritis. However, the molecular mechanisms underlying neoantigen formation and pathogenic autoreactive responses for AS are largely unknown. There is an urgent need to develop a systematic approach to profiling the possible PTMs in patients with AS and identifying AS-associated PTMs responsible for autoreactive neoantigen production to better understand the etiology of autoimmune diseases. RATIONALE AS has been suggested to be an autoimmune disease because of its clear correlation with certain major histocompatibility complex (MHC) alleles, including HLA-B27. Neoantigens have been hypothesized to induce an aberrant immune response, leading to pathogenic autoreactive T cell responses and autoantibody generation in AS. Here, we developed a systematic open search approach to identify any possible amino acid residues and derivatives in the proteins that are different from the genomic coding sequences. We then applied this information to identify AS-related neoantigens with PTMs within a possible pool of PTM autoantigens and elucidate the pathogenesis of AS. RESULTS An open search approach was applied to identify any possible amino acid derivatives across the proteome of patients with AS. This approach generated a large set of noncoded amino acids representing the mass differences between the coded amino acids and actual residues. Among these, an amino acid derivative with a delta mass of 72.021 showed the greatest increase in patients with AS and resulted from a PTM called cysteine carboxyethylation. In vitro and in vivo experiments demonstrated that carboxyethylation at a cysteine residue of integrin αIIb [ITGA2B (CD41)] was catalyzed by cystathionine beta synthase (CBS) in a process that required 3-hydroxypropionic acid (3-HPA), a metabolite commonly released from gut microbes. Cysteine carboxyethylation induced the lysosomal degradation of ITGA2B and produced neoantigens that triggered MHC-II–dependent CD4 + T cell responses. Fluorescence polarization and enzyme-linked immunosorbent assay (ELISA) demonstrated that the identified carboxyethylated peptide (ITGA2B-ceC96) specifically interacted with HLA-DRA*01/HLA-DRB1*04 and was associated with autoantibody production and T cell responses in HLA-DRB1*04 patients. Additional in vitro assays showed that the neoantigen ITGA2B-ceC96 correlated with 3-HPA levels but was independent of CBS expression. HLA-DRB1 haplotype, the carboxyethylated peptide, specific autoantibodies, and 3-HPA levels in patients with AS all correlated with one another. 3-HPA–treated and ITGA2B-ceC96–immunized HLA-DR4 transgenic mice developed colitis and vertebral bone erosion. Thus, cysteine carboxyethylation induced by the metabolite 3-HPA generates a neoantigen that appears to be critical for autoimmune responses in patients with AS. CONCLUSION Cysteine carboxyethylation is an in vivo protein modification induced by the metabolite 3-HPA, which is commonly released from gut microbes. Carboxyethylated ITGA2B then induces autoantibody production and autoimmune response in AS. Our work provides a systematic workflow to identify differentially modified proteins that are important for neoantigen production in immune disorders. This approach furthers our understanding of AS pathogenesis and may aid in the development of neoantigen-based diagnosis and treatment for AS and other autoimmune diseases. Metabolite-induced cysteine carboxyethylation provokes HLA-restricted autoimmune responses in ankylosing spondylitis. 3-HPA, which is commonly obtained from food and gut microbes, induces carboxyethylation of cysteine residues in integrin αIIb (ITGA2B). Cysteine carboxyethylation requires CBS, and carboxyethylated ITGA2B (ITGA2B-ceC96) peptides are recruited to the HLA-DR4 complex and thereby stimulate CD4 + T cell responses closely related to AS.
    Type of Medium: Online Resource
    ISSN: 0036-8075 , 1095-9203
    RVK:
    RVK:
    Language: English
    Publisher: American Association for the Advancement of Science (AAAS)
    Publication Date: 2023
    detail.hit.zdb_id: 128410-1
    detail.hit.zdb_id: 2066996-3
    detail.hit.zdb_id: 2060783-0
    SSG: 11
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    In: The Journal of Neuroscience, Society for Neuroscience, Vol. 33, No. 9 ( 2013-02-27), p. 3989-4001
    Abstract: Previous studies have demonstrated that chronic brain hypoperfusion (CBH) causes Aβ aggregation by upregulating expression of amyloid precursor protein (APP) and β-site APP cleaving enzyme 1 (BACE1) protein, which is accompanied by cognitive impairment, but the mechanisms are not fully understood. In this study, we evaluated the effect of microRNA on memory impairment in rats induced by CBH. We show here that CBH generated by bilateral common carotid artery occlusion (2VO) significantly decreased the learning and memory ability in rats, as assessed by Morris water maze, and upregulated expression of APP and BACE1 proteins in the hippocampus and cortex of rats, as evaluated by Western blot and immunofluorescence. In reciprocal, qRT-PCR analysis showed that microRNA-195 ( miR-195 ) was downregulated in both the hippocampus and cortex of rats following CBH, and in the plasma of dementia patients. APP and BACE1 proteins were downregulated by miR-195 overexpression, upregulated by miR-195 inhibition, and unchanged by binding-site mutation or miR-masks, indicating that APP and BACE1 are two potential targets for miR-195 . Knockdown of endogenous miR-195 by lentiviral vector-mediated overexpression of its antisense molecule (lenti-pre-AMO- miR-195 ) elicited dementia in rats, whereas overexpression of miR-195 using lenti-pre- miR-195 reduced dementia vulnerability triggered by 2VO. Additionally, chromatin immunoprecipitation analysis showed that NFκB was bound to the promoter region of miR-195 and inhibited its expression. We conclude that miR-195 may play a key role in determining dementia susceptibility in 2VO rats by regulating APP and BACE1 expression at the post-transcriptional level, and exogenous complement of miR-195 may be a potentially valuable anti-dementia approach.
    Type of Medium: Online Resource
    ISSN: 0270-6474 , 1529-2401
    Language: English
    Publisher: Society for Neuroscience
    Publication Date: 2013
    detail.hit.zdb_id: 1475274-8
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Online Resource
    Online Resource
    Proceedings of the National Academy of Sciences ; 2010
    In:  Proceedings of the National Academy of Sciences Vol. 107, No. 36 ( 2010-09-07), p. 15886-15891
    In: Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, Vol. 107, No. 36 ( 2010-09-07), p. 15886-15891
    Abstract: Angiotensin-converting enzyme 2 (ACE2) is a newly discovered homolog of ACE whose actions oppose those of angiotensin II (AngII). However, the underlying mechanisms by which ACE2 effectively suppresses early atherosclerotic lesions remain poorly understood. Here, we show, both in vitro and in vivo, that ACE2 inhibited the development of early atherosclerotic lesions by suppressing the growth of vascular smooth muscle cells (VSMCs) and improving endothelial function. In a relatively large cohort animal study (66 rabbits), aortic segments transfected by Ad-ACE2 showed significantly attenuated fatty streak formation, neointimal macrophage infiltration, and alleviation of impaired endothelial function. Segments also showed decreased expression of monocyte chemoattractant protein 1, lectin-like oxidized low-density lipoprotein receptor 1, and proliferating cell nuclear antigen, which led to the delayed onset of atherosclerotic lesions. At the cellular level, ACE2 significantly modulated AngII-induced growth and migration in human umbilical vein endothelial cells and VSMCs. The antiatherosclerotic effect of ACE2 involved down-regulation of the ERK-p38, JAK-STAT, and AngII-ROS-NF-κB signaling pathways and up-regulation of the PI3K-Akt pathway. These findings revealed the molecular mechanisms of the antiatherosclerotic activity of ACE2 and suggested that modulation of ACE2 could offer a therapeutic option for treating atherosclerosis.
    Type of Medium: Online Resource
    ISSN: 0027-8424 , 1091-6490
    RVK:
    RVK:
    Language: English
    Publisher: Proceedings of the National Academy of Sciences
    Publication Date: 2010
    detail.hit.zdb_id: 209104-5
    detail.hit.zdb_id: 1461794-8
    SSG: 11
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    In: Science, American Association for the Advancement of Science (AAAS), Vol. 378, No. 6617 ( 2022-10-21), p. 308-313
    Abstract: Flexible metal-organic framework honeycombed nanosheet membranes are applied for alcohol-water separations.
    Type of Medium: Online Resource
    ISSN: 0036-8075 , 1095-9203
    RVK:
    RVK:
    Language: English
    Publisher: American Association for the Advancement of Science (AAAS)
    Publication Date: 2022
    detail.hit.zdb_id: 128410-1
    detail.hit.zdb_id: 2066996-3
    detail.hit.zdb_id: 2060783-0
    SSG: 11
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Online Resource
    Online Resource
    Society for Neuroscience ; 2021
    In:  The Journal of Neuroscience Vol. 41, No. 48 ( 2021-12-01), p. 9988-10003
    In: The Journal of Neuroscience, Society for Neuroscience, Vol. 41, No. 48 ( 2021-12-01), p. 9988-10003
    Abstract: Long-term limb nerve injury often leads to mirror-image pain (MIP), an abnormal pain sensation in the limb contralateral to the injury. Although it is clear that MIP is mediated in part by central nociception processing, the underlying mechanisms remain poorly understood. The anterior cingulate cortex (ACC) is a key brain region that receives relayed peripheral nociceptive information from the contralateral limb. In this study, we induced MIP in male mice, in which a unilateral chronic constrictive injury of the sciatic nerve (CCI) induced a decreased nociceptive threshold in both hind limbs and an increased number of c-Fos-expressing neurons in the ACC both contralateral and ipsilateral to the injured limb. Using viral-mediated projection mapping, we observed that a portion of ACC neurons formed monosynaptic connections with contralateral ACC neurons. Furthermore, the number of cross-callosal projection ACC neurons that exhibited c-Fos signal was increased in MIP-expressing mice, suggesting enhanced transmission between ACC neurons of the two hemispheres. Moreover, selective inhibition of the cross-callosal projection ACC neurons contralateral to the injured limb normalized the nociceptive sensation of the uninjured limb without affecting the increased nociceptive sensation of the injured limb in CCI mice. In contrast, inhibition of the non–cross-callosal projection ACC neurons contralateral to the injury normalized the nociceptive sensation of the injured limb without affecting the MIP exhibited in the uninjured limb. These results reveal a circuit mechanism, namely, the cross-callosal projection of ACC between two hemispheres, that contributes to MIP and possibly other forms of contralateral migration of pain sensation. SIGNIFICANCE STATEMENT Mirror-image pain (MIP) refers to the increased pain sensitivity of the contralateral body part in patients with chronic pain. This pathology requires central processing, yet the mechanisms are less known. Here, we demonstrate that the cross-callosal projection neurons in the anterior cingulate cortex (ACC) contralateral to the injury contribute to MIP exhibited in the uninjured limb, but do not affect nociceptive sensation of the injured limb. In contrast, the non–cross-callosal projection neurons in the ACC contralateral to the injury contribute to nociceptive sensation of the injured limb, but do not affect MIP exhibited in the uninjured limb. Our study depicts a novel cross-callosal projection of ACC that contributes to MIP, providing a central mechanism for MIP in chronic pain state.
    Type of Medium: Online Resource
    ISSN: 0270-6474 , 1529-2401
    Language: English
    Publisher: Society for Neuroscience
    Publication Date: 2021
    detail.hit.zdb_id: 1475274-8
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    In: The Journal of Neuroscience, Society for Neuroscience, Vol. 25, No. 5 ( 2005-02-02), p. 1219-1225
    Abstract: Biochemical and genetic studies place the amyloid precursor protein (APP) at the center stage of Alzheimer's disease (AD) pathogenesis. Although mutations in the APP gene lead to dominant inheritance of familial AD, the normal function of APP remains elusive. Here, we report that the APP family of proteins plays an essential role in the development of neuromuscular synapses. Mice deficient in APP and its homolog APP-like protein 2 ( APLP2 ) exhibit aberrant apposition of presynaptic marker proteins with postsynaptic acetylcholine receptors and excessive nerve terminal sprouting. The number of synaptic vesicles at presynaptic terminals is dramatically reduced. These structural abnormalities are accompanied by defective neurotransmitter release and a high incidence of synaptic failure. Our results identify APP/APLP2 as key regulators of structure and function of developing neuromuscular synapses.
    Type of Medium: Online Resource
    ISSN: 0270-6474 , 1529-2401
    Language: English
    Publisher: Society for Neuroscience
    Publication Date: 2005
    detail.hit.zdb_id: 1475274-8
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Online Resource
    Online Resource
    Elsevier BV ; 2018
    In:  Information Sciences Vol. 422 ( 2018-01), p. 161-176
    In: Information Sciences, Elsevier BV, Vol. 422 ( 2018-01), p. 161-176
    Type of Medium: Online Resource
    ISSN: 0020-0255
    RVK:
    Language: English
    Publisher: Elsevier BV
    Publication Date: 2018
    detail.hit.zdb_id: 218760-7
    detail.hit.zdb_id: 1478990-5
    SSG: 24,1
    SSG: 7,11
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...