GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Brain, Oxford University Press (OUP), Vol. 144, No. 2 ( 2021-03-03), p. 601-614
    Abstract: Oculopharyngodistal myopathy is a late-onset degenerative muscle disorder characterized by ptosis and weakness of the facial, pharyngeal, and distal limb muscles. A recent report suggested a non-coding trinucleotide repeat expansion in LRP12 to be associated with the disease. Here we report a genetic study in a Chinese cohort of 41 patients with the clinical diagnosis of oculopharyngodistal myopathy (21 cases from seven families and 20 sporadic cases). In a large family with 12 affected individuals, combined haplotype and linkage analysis revealed a maximum two-point logarithm of the odds (LOD) score of 3.3 in chromosomal region chr19p13.11-p13.2 and narrowed the candidate region to an interval of 4.5 Mb. Using a comprehensive strategy combining whole-exome sequencing, long-read sequencing, repeat-primed polymerase chain reaction and GC-rich polymerase chain reaction, we identified an abnormal CGG repeat expansion in the 5′ UTR of the GIPC1 gene that co-segregated with disease. Overall, the repeat expansion in GIPC1 was identified in 51.9% independent pedigrees (4/7 families and 10/20 sporadic cases), while the repeat expansion in LRP12 was only identified in one sporadic case (3.7%) in our cohort. The number of CGG repeats was & lt;30 in controls but & gt;60 in affected individuals. There was a slight correlation between repeat size and the age at onset. Both repeat expansion and retraction were observed during transmission but somatic instability was not evident. These results further support that non-coding CGG repeat expansion plays an essential role in the pathogenesis of oculopharyngodistal myopathy.
    Type of Medium: Online Resource
    ISSN: 0006-8950 , 1460-2156
    RVK:
    Language: English
    Publisher: Oxford University Press (OUP)
    Publication Date: 2021
    detail.hit.zdb_id: 1474117-9
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    Society for Neuroscience ; 2014
    In:  The Journal of Neuroscience Vol. 34, No. 41 ( 2014-10-08), p. 13614-13628
    In: The Journal of Neuroscience, Society for Neuroscience, Vol. 34, No. 41 ( 2014-10-08), p. 13614-13628
    Abstract: Degeneration of basal forebrain (BF) cholinergic neurons is one of the early pathological events in Alzheimer's disease (AD) and is thought to be responsible for the cholinergic and cognitive deficits in AD. The functions of this group of neurons are highly influenced by glutamatergic inputs from neocortex. We found that activation of metabotropic glutamate receptor 7 (mGluR7) decreased NMDAR-mediated currents and NR1 surface expression in rodent BF neurons via a mechanism involving cofilin-regulated actin dynamics. In BF cholinergic neurons, β-amyloid (Aβ) selectively impaired mGluR7 regulation of NMDARs by increasing p21-activated kinase activity and decreasing cofilin-mediated actin depolymerization through a p75 NTR -dependent mechanism. Cell viability assays showed that activation of mGluR7 protected BF neurons from NMDA-induced excitotoxicity, which was selectively impaired by Aβ in BF cholinergic neurons. It provides a potential basis for the Aβ-induced disruption of calcium homeostasis that might contribute to the selective degeneration of BF cholinergic neurons in the early stage of AD.
    Type of Medium: Online Resource
    ISSN: 0270-6474 , 1529-2401
    Language: English
    Publisher: Society for Neuroscience
    Publication Date: 2014
    detail.hit.zdb_id: 1475274-8
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    Proceedings of the National Academy of Sciences ; 2009
    In:  Proceedings of the National Academy of Sciences Vol. 106, No. 25 ( 2009-06-23), p. 10195-10200
    In: Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, Vol. 106, No. 25 ( 2009-06-23), p. 10195-10200
    Abstract: The p53 tumor suppressor plays a central role in integrating cellular responses to various stresses. Tight regulation of p53 is thus essential for the maintenance of genome integrity and normal cell proliferation. Currently, several ubiquitin ligases, including the single-subunit RING-finger types—MDM2, Pirh2, and COP1—and the HECT-domain type—ARF-BP1—have been reported to target p53 for degradation. Here, we report the identification of a human Kelch domain-containing F-box protein, JFK. We showed that JFK promotes ubiquitination and degradation of p53. But unlike MDM2, Pirh2, COP1, and ARF-BP1, all of which possess an intrinsic ubiquitin ligase activity, JFK destabilizes p53 through the assembly of a Skp1-Cul1-F-box complex. Significantly, JFK inhibits p53-dependent transcription, and depletion of JFK stabilizes p53, promotes cell apoptosis, arrests cells in the G 1 phase, and sensitizes cells to ionizing radiation-induced cell death. These data indicate that JFK is a critical negative regulator of p53 and represents a pathway for the maintenance of p53 levels in unstressed cells. Our experiments link the Skp1-Cul1-F-box system to p53 regulation.
    Type of Medium: Online Resource
    ISSN: 0027-8424 , 1091-6490
    RVK:
    RVK:
    Language: English
    Publisher: Proceedings of the National Academy of Sciences
    Publication Date: 2009
    detail.hit.zdb_id: 209104-5
    detail.hit.zdb_id: 1461794-8
    SSG: 11
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Online Resource
    Online Resource
    Proceedings of the National Academy of Sciences ; 2006
    In:  Proceedings of the National Academy of Sciences Vol. 103, No. 48 ( 2006-11-28), p. 18338-18343
    In: Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, Vol. 103, No. 48 ( 2006-11-28), p. 18338-18343
    Abstract: The noradrenergic system in the prefrontal cortex (PFC) is involved in many physiological and psychological processes, including working memory and mood control. To understand the functions of the noradrenergic system, we examined the regulation of NMDA receptors (NMDARs), key players in cognition and emotion, by α1- and α2-adrenergic receptors (α1-ARs, α2-ARs) in PFC pyramidal neurons. Applying norepinephrine or a norepinephrine transporter inhibitor reduced the amplitude but not paired-pulse ratio of NMDAR-mediated excitatory postsynaptic currents (EPSC) in PFC slices. Specific α1-AR or α2-AR agonists also decreased NMDAR-EPSC amplitude and whole-cell NMDAR current amplitude in dissociated PFC neurons. The α1-AR effect depended on the phospholipase C–inositol 1,4,5-trisphosphate–Ca 2+ pathway, whereas the α2-AR effect depended on protein kinase A and the microtubule-based transport of NMDARs that is regulated by ERK signaling. Furthermore, two members of the RGS family, RGS2 and RGS4, were found to down-regulate the effect of α1-AR on NMDAR currents, whereas only RGS4 was involved in inhibiting α2-AR regulation of NMDAR currents. The regulating effects of RGS2/4 on α1-AR signaling were lost in mutant mice lacking spinophilin, which binds several RGS members and G protein-coupled receptors, whereas the effect of RGS4 on α2-AR signaling was not altered in spinophilin-knockout mice. Our work suggests that activation of α1-ARs or α2-ARs suppresses NMDAR currents in PFC neurons by distinct mechanisms. The effect of α1-ARs is modified by RGS2/4 that are recruited to the receptor complex by spinophilin, whereas the effect of α2-ARs is modified by RGS4 independent of spinophilin.
    Type of Medium: Online Resource
    ISSN: 0027-8424 , 1091-6490
    RVK:
    RVK:
    Language: English
    Publisher: Proceedings of the National Academy of Sciences
    Publication Date: 2006
    detail.hit.zdb_id: 209104-5
    detail.hit.zdb_id: 1461794-8
    SSG: 11
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Online Resource
    Online Resource
    Society for Neuroscience ; 2013
    In:  The Journal of Neuroscience Vol. 33, No. 40 ( 2013-10-02), p. 15767-15778
    In: The Journal of Neuroscience, Society for Neuroscience, Vol. 33, No. 40 ( 2013-10-02), p. 15767-15778
    Abstract: Shank3 , which encodes a scaffolding protein at glutamatergic synapses, is a genetic risk factor for autism. In this study, we examined the impact of Shank3 deficiency on the NMDA-type glutamate receptor, a key player in cognition and mental illnesses. We found that knockdown of Shank3 with a small interfering RNA (siRNA) caused a significant reduction of NMDAR-mediated ionic or synaptic current, as well as the surface expression of NR1 subunits, in rat cortical cultures. The effect of Shank3 siRNA on NMDAR currents was blocked by an actin stabilizer, and was occluded by an actin destabilizer, suggesting the involvement of actin cytoskeleton. Since actin dynamics is regulated by the GTPase Rac1 and downstream effector p21-activated kinase (PAK), we further examined Shank3 regulation of NMDARs when Rac1 or PAK was manipulated. We found that the reducing effect of Shank3 siRNA on NMDAR currents was mimicked and occluded by specific inhibitors for Rac1 or PAK, and was blocked by constitutively active Rac1 or PAK. Immunocytochemical data showed a strong reduction of F-actin clusters after Shank3 knockdown, which was occluded by a PAK inhibitor. Inhibiting cofilin, the primary downstream target of PAK and a major actin depolymerizing factor, prevented Shank3 siRNA from reducing NMDAR currents and F-actin clusters. Together, these results suggest that Shank3 deficiency induces NMDAR hypofunction by interfering with the Rac1/PAK/cofilin/actin signaling, leading to the loss of NMDAR membrane delivery or stability. It provides a potential mechanism for the role of Shank3 in cognitive deficit in autism.
    Type of Medium: Online Resource
    ISSN: 0270-6474 , 1529-2401
    Language: English
    Publisher: Society for Neuroscience
    Publication Date: 2013
    detail.hit.zdb_id: 1475274-8
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Online Resource
    Online Resource
    Proceedings of the National Academy of Sciences ; 2009
    In:  Proceedings of the National Academy of Sciences Vol. 106, No. 33 ( 2009-08-18), p. 14075-14079
    In: Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, Vol. 106, No. 33 ( 2009-08-18), p. 14075-14079
    Abstract: The prefrontal cortex (PFC), a key brain region controlling cognition and emotion, is strongly influenced by stress. While chronic stress often produces detrimental effects on these measures, acute stress has been shown to enhance learning and memory, predominantly through the action of corticosteroid stress hormones. We used a combination of electrophysiological, biochemical, and behavioral approaches in an effort to identify the cellular targets of acute stress. We found that behavioral stressors in vivo cause a long-lasting potentiation of NMDAR- and AMPAR-mediated synaptic currents via glucocorticoid receptors (GRs) selectively in PFC pyramidal neurons. This effect is accompanied by increased surface expression of NMDAR and AMPAR subunits in acutely stressed animals. Furthermore, behavioral tests indicate that working memory, a key function relying on recurrent excitation within networks of PFC neurons, is enhanced by acute stress via a GR-dependent mechanism. These results have identified a form of long-term potentiation of synaptic transmission induced by natural stimuli in vivo, providing a potential molecular and cellular mechanism for the beneficial effects of acute stress on cognitive processes subserved by PFC.
    Type of Medium: Online Resource
    ISSN: 0027-8424 , 1091-6490
    RVK:
    RVK:
    Language: English
    Publisher: Proceedings of the National Academy of Sciences
    Publication Date: 2009
    detail.hit.zdb_id: 209104-5
    detail.hit.zdb_id: 1461794-8
    SSG: 11
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    In: Science, American Association for the Advancement of Science (AAAS), Vol. 359, No. 6374 ( 2018-01-26), p. 411-418
    Abstract: Aerosol-cloud interactions remain the largest uncertainty in climate projections. Ultrafine aerosol particles smaller than 50 nanometers (UAP 〈 50 ) can be abundant in the troposphere but are conventionally considered too small to affect cloud formation. Observational evidence and numerical simulations of deep convective clouds (DCCs) over the Amazon show that DCCs forming in a low-aerosol environment can develop very large vapor supersaturation because fast droplet coalescence reduces integrated droplet surface area and subsequent condensation. UAP 〈 50 from pollution plumes that are ingested into such clouds can be activated to form additional cloud droplets on which excess supersaturation condenses and forms additional cloud water and latent heating, thus intensifying convective strength. This mechanism suggests a strong anthropogenic invigoration of DCCs in previously pristine regions of the world.
    Type of Medium: Online Resource
    ISSN: 0036-8075 , 1095-9203
    RVK:
    RVK:
    Language: English
    Publisher: American Association for the Advancement of Science (AAAS)
    Publication Date: 2018
    detail.hit.zdb_id: 128410-1
    detail.hit.zdb_id: 2066996-3
    detail.hit.zdb_id: 2060783-0
    SSG: 11
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...