GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    IOP Publishing ; 2011
    In:  EPL (Europhysics Letters) Vol. 96, No. 6 ( 2011-12-01), p. 68005-
    In: EPL (Europhysics Letters), IOP Publishing, Vol. 96, No. 6 ( 2011-12-01), p. 68005-
    Type of Medium: Online Resource
    ISSN: 0295-5075 , 1286-4854
    Language: Unknown
    Publisher: IOP Publishing
    Publication Date: 2011
    detail.hit.zdb_id: 1465366-7
    detail.hit.zdb_id: 165776-8
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    Acoustical Society of America (ASA) ; 2008
    In:  The Journal of the Acoustical Society of America Vol. 123, No. 5_Supplement ( 2008-05-01), p. 3115-3115
    In: The Journal of the Acoustical Society of America, Acoustical Society of America (ASA), Vol. 123, No. 5_Supplement ( 2008-05-01), p. 3115-3115
    Abstract: Phase array ultrasonic sensors have been used widely to generate higher directional radiating patterns in which piezoelectric units are distributed sparsely in space. In this study, we present a novel design of a phase array ultrasonic sensor based on the concept of vibration decoupling. Decoupling is achieved by careful design of source aperture, and such design allows piezoelectric units tightly located in the same structure. The phase array sensor is designed herein as a cylinder with a dumbbell shape groove to decouple vibration, and finite element analysis is used to optimize the design. Two piezoelectric discs are adhered on the bottom plate of the sensor whereby desirable wave generation and detection are controlled adaptively. By electrical steering, the sensor thus operates as a dipole mode. Finally, prototypes of the sensor are made and experiments are conducted to verify simulation results.
    Type of Medium: Online Resource
    ISSN: 0001-4966 , 1520-8524
    RVK:
    Language: English
    Publisher: Acoustical Society of America (ASA)
    Publication Date: 2008
    detail.hit.zdb_id: 1461063-2
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Brain, Oxford University Press (OUP), Vol. 144, No. 10 ( 2021-11-29), p. 3142-3158
    Abstract: Traumatic brain injury (TBI) leads to major brain anatomopathological damages underlined by neuroinflammation, oxidative stress and progressive neurodegeneration, ultimately leading to motor and cognitive deterioration. The multiple pathological events resulting from TBI can be addressed not by a single therapeutic approach, but rather by a synergistic biotherapy capable of activating a complementary set of signalling pathways and providing synergistic neuroprotective, anti-inflammatory, antioxidative, and neurorestorative activities. Human platelet lysate might fulfil these requirements as it is composed of a plethora of biomolecules readily accessible as a TBI biotherapy. In the present study, we tested the therapeutic potential of human platelet lysate using in vitro and in vivo models of TBI. We first prepared and characterized platelet lysate from clinical-grade human platelet concentrates. Platelets were pelletized, lysed by three freeze-thaw cycles, and centrifuged. The supernatant was purified by 56°C 30 min heat treatment and spun to obtain the heat-treated platelet pellet lysate that was characterized by ELISA and proteomic analyses. Two mouse models were used to investigate platelet lysate neuroprotective potential. The injury was induced by an in-house manual controlled scratching of the animals’ cortex or by controlled cortical impact injury. The platelet lysate treatment was performed by topical application of 60 µl in the lesioned area, followed by daily 60 µl intranasal administration from Day 1 to 6 post-injury. Platelet lysate proteomics identified over 1000 proteins including growth factors, neurotrophins, and antioxidants. ELISA detected several neurotrophic and angiogenic factors at ∼1–50 ng/ml levels. We demonstrate, using two mouse models of TBI, that topical application and intranasal platelet lysate consistently improved mouse motor function in the beam and rotarod tests, mitigated cortical neuroinflammation, and oxidative stress in the injury area, as revealed by downregulation of pro-inflammatory genes and the reduction in reactive oxygen species levels. Moreover, platelet lysate treatment reduced the loss of cortical synaptic proteins. Unbiased proteomic analyses revealed that heat-treated platelet pellet lysate reversed several pathways promoted by both controlled cortical impact and cortical brain scratch and related to transport, postsynaptic density, mitochondria or lipid metabolism. The present data strongly support, for the first time, that human platelet lysate is a reliable and effective therapeutic source of neurorestorative factors. Therefore, brain administration of platelet lysate is a therapeutical strategy that deserves serious and urgent consideration for universal brain trauma treatment.
    Type of Medium: Online Resource
    ISSN: 0006-8950 , 1460-2156
    RVK:
    Language: English
    Publisher: Oxford University Press (OUP)
    Publication Date: 2021
    detail.hit.zdb_id: 1474117-9
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Online Resource
    Online Resource
    Elsevier BV ; 2002
    In:  Information Sciences Vol. 144, No. 1-4 ( 2002-7), p. 219-225
    In: Information Sciences, Elsevier BV, Vol. 144, No. 1-4 ( 2002-7), p. 219-225
    Type of Medium: Online Resource
    ISSN: 0020-0255
    RVK:
    Language: English
    Publisher: Elsevier BV
    Publication Date: 2002
    detail.hit.zdb_id: 218760-7
    detail.hit.zdb_id: 1478990-5
    SSG: 24,1
    SSG: 7,11
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Online Resource
    Online Resource
    Society for Neuroscience ; 2008
    In:  The Journal of Neuroscience Vol. 28, No. 52 ( 2008-12-24), p. 14259-14270
    In: The Journal of Neuroscience, Society for Neuroscience, Vol. 28, No. 52 ( 2008-12-24), p. 14259-14270
    Abstract: Inflammation is involved in some neurodegenerative disorders. NMDA glutamate receptors play an important role in neuronal development. Here, we show that NR1 expression in the cerebral cortex and primary neurons of rats was upregulated after lipopolysaccharide (LPS) treatment. This increase in NR1 expression was considered to be strongly associated with hypoxia-inducible factor-1α (HIF-1α) activation because the treatment of primary neurons with either echinomycin or small interfering RNA (siRNA) targeting HIF-1α could block NR1 expression. HIF-1α could be induced by an increase in the translational efficiency of the cells. After this, it was transported into the nucleus where it bound to the NR1 promoter and regulated the induction of NR1 transcriptional activity by LPS. LPS injection into the prefrontal cortex caused neuronal death, and this condition was aggravated by intracerebroventricular injection of echinomycin. Furthermore, knockdown of HIF-1α and NR1 by the appropriate siRNAs reduced the neurite outgrowth and viability of the primary neurons. These results suggest that NR1 expression is regulated by HIF-1α and plays a protective role in neurons during LPS challenge.
    Type of Medium: Online Resource
    ISSN: 0270-6474 , 1529-2401
    Language: English
    Publisher: Society for Neuroscience
    Publication Date: 2008
    detail.hit.zdb_id: 1475274-8
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...