GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    Proceedings of the National Academy of Sciences ; 2023
    In:  Proceedings of the National Academy of Sciences Vol. 120, No. 17 ( 2023-04-25)
    In: Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, Vol. 120, No. 17 ( 2023-04-25)
    Abstract: The invasion of nerves by cancer cells, or perineural invasion (PNI), is potentiated by the nerve microenvironment and is associated with adverse clinical outcomes. However, the cancer cell characteristics that enable PNI are poorly defined. Here, we generated cell lines enriched for a rapid neuroinvasive phenotype by serially passaging pancreatic cancer cells in a murine sciatic nerve model of PNI. Cancer cells isolated from the leading edge of nerve invasion showed a progressively increasing nerve invasion velocity with higher passage number. Transcriptome analysis revealed an upregulation of proteins involving the plasma membrane, cell leading edge, and cell movement in the leading neuroinvasive cells. Leading cells progressively became round and blebbed, lost focal adhesions and filipodia, and transitioned from a mesenchymal to amoeboid phenotype. Leading cells acquired an increased ability to migrate through microchannel constrictions and associated more with dorsal root ganglia than nonleading cells. ROCK inhibition reverted leading cells from an amoeboid to mesenchymal phenotype, reduced migration through microchannel constrictions, reduced neurite association, and reduced PNI in a murine sciatic nerve model. Cancer cells with rapid PNI exhibit an amoeboid phenotype, highlighting the plasticity of cancer migration mode in enabling rapid nerve invasion.
    Type of Medium: Online Resource
    ISSN: 0027-8424 , 1091-6490
    RVK:
    RVK:
    Language: English
    Publisher: Proceedings of the National Academy of Sciences
    Publication Date: 2023
    detail.hit.zdb_id: 209104-5
    detail.hit.zdb_id: 1461794-8
    SSG: 11
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    Proceedings of the National Academy of Sciences ; 2014
    In:  Proceedings of the National Academy of Sciences Vol. 111, No. 19 ( 2014-05-13)
    In: Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, Vol. 111, No. 19 ( 2014-05-13)
    Abstract: The ability of cancer cells to invade along nerves is associated with aggressive disease and diminished patient survival rates. Perineural invasion (PNI) may be mediated by nerve secretion of glial cell line-derived neurotrophic factor (GDNF) attracting cancer cell migration through activation of cell surface Ret proto-oncogene (RET) receptors. GDNF family receptor (GFR)α1 acts as coreceptor with RET, with both required for response to GDNF. We demonstrate that GFRα1 released by nerves enhances PNI, even in the absence of cancer cell GFRα1 expression. Cancer cell migration toward GDNF, RET phosphorylation, and MAPK pathway activity are increased with exposure to soluble GFRα1 in a dose-dependent fashion. Dorsal root ganglia (DRG) release soluble GFRα1, which potentiates RET activation and cancer cell migration. In vitro DRG coculture assays of PNI show diminished PNI with DRG from GFRα1 +/− mice compared with GFRα1 +/+ mice. An in vivo murine model of PNI demonstrates that cancer cells lacking GFRα1 maintain an ability to invade nerves and impair nerve function, whereas those lacking RET lose this ability. A tissue microarray of human pancreatic ductal adenocarcinomas demonstrates wide variance of cancer cell GFRα1 expression, suggesting an alternate source of GFRα1 in PNI. These findings collectively demonstrate that GFRα1 released by nerves enhances PNI through GDNF-RET signaling and that GFRα1 expression by cancer cells enhances but is not required for PNI. These results advance a mechanistic understanding of PNI and implicate the nerve itself as a key facilitator of this adverse cancer cell behavior.
    Type of Medium: Online Resource
    ISSN: 0027-8424 , 1091-6490
    RVK:
    RVK:
    Language: English
    Publisher: Proceedings of the National Academy of Sciences
    Publication Date: 2014
    detail.hit.zdb_id: 209104-5
    detail.hit.zdb_id: 1461794-8
    SSG: 11
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, Vol. 117, No. 5 ( 2020-02-04), p. 2560-2569
    Abstract: De novo mutations (DNMs), or mutations that appear in an individual despite not being seen in their parents, are an important source of genetic variation whose impact is relevant to studies of human evolution, genetics, and disease. Utilizing high-coverage whole-genome sequencing data as part of the Trans-Omics for Precision Medicine (TOPMed) Program, we called 93,325 single-nucleotide DNMs across 1,465 trios from an array of diverse human populations, and used them to directly estimate and analyze DNM counts, rates, and spectra. We find a significant positive correlation between local recombination rate and local DNM rate, and that DNM rate explains a substantial portion (8.98 to 34.92%, depending on the model) of the genome-wide variation in population-level genetic variation from 41K unrelated TOPMed samples. Genome-wide heterozygosity does correlate with DNM rate, but only explains 〈 1% of variation. While we are underpowered to see small differences, we do not find significant differences in DNM rate between individuals of European, African, and Latino ancestry, nor across ancestrally distinct segments within admixed individuals. However, we did find significantly fewer DNMs in Amish individuals, even when compared with other Europeans, and even after accounting for parental age and sequencing center. Specifically, we found significant reductions in the number of C→A and T→C mutations in the Amish, which seem to underpin their overall reduction in DNMs. Finally, we calculated near-zero estimates of narrow sense heritability ( h 2 ), which suggest that variation in DNM rate is significantly shaped by nonadditive genetic effects and the environment.
    Type of Medium: Online Resource
    ISSN: 0027-8424 , 1091-6490
    RVK:
    RVK:
    Language: English
    Publisher: Proceedings of the National Academy of Sciences
    Publication Date: 2020
    detail.hit.zdb_id: 209104-5
    detail.hit.zdb_id: 1461794-8
    SSG: 11
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...