GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Linguistics  (2)
  • 1
    Online Resource
    Online Resource
    Proceedings of the National Academy of Sciences ; 1993
    In:  Proceedings of the National Academy of Sciences Vol. 90, No. 16 ( 1993-08-15), p. 7824-7828
    In: Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, Vol. 90, No. 16 ( 1993-08-15), p. 7824-7828
    Abstract: The leukocyte adhesion molecule CR3 (CD11b/CD18, Mac-1) promotes leukocyte transmigration into tissues by engaging an unknown cognate ligand on the surface of vascular endothelial cells. Filamentous hemagglutinin (FHA), an adhesin of the bacterium Bordetella pertussis, binds to CR3. We hypothesized that FHA mimics the native ligand for the CR3 integrin on endothelial cells and predicted that anti-FHA antibodies should bind to endothelial cells, interfere with leukocyte recruitment, and induce endothelial permeability. Anti-FHA monoclonal antibodies bound to cerebral microvessels in sections from human brain and upon intravenous injection into rabbits. Antibody binding correlated with the ability to recognize two polypeptides in extracts of human cerebral vessels that were also bound by CD18. In vivo, antibody binding not only interfered with transmigration of leukocytes into cerebrospinal fluid but also induced a dose-dependent reversible increase in blood-brain barrier permeability sufficient to improve delivery of intravenously administered therapeutic agents to brain parenchyma.
    Type of Medium: Online Resource
    ISSN: 0027-8424 , 1091-6490
    RVK:
    RVK:
    Language: English
    Publisher: Proceedings of the National Academy of Sciences
    Publication Date: 1993
    detail.hit.zdb_id: 209104-5
    detail.hit.zdb_id: 1461794-8
    SSG: 11
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    Proceedings of the National Academy of Sciences ; 1992
    In:  Proceedings of the National Academy of Sciences Vol. 89, No. 1 ( 1992-01), p. 118-122
    In: Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, Vol. 89, No. 1 ( 1992-01), p. 118-122
    Abstract: Bordetella pertussis is bound to glycoconjugates on human cilia and macrophages by multiple adhesins, including pertussis toxin. The cellular recognition properties of the B oligomer of pertussis toxin were characterized and the location and structural requirements of the recognition domains were identified by site-directed mutagenesis of recombinant pertussis toxin subunits. Differential recognition of cilia and macrophages, respectively, was localized to subunits S2 and S3 of the B oligomer. Despite greater than 80% sequence homology between these subunits, ciliary lactosylceramide exclusively recognized S2 and leukocytic gangliosides bound only S3. Substitution at residue 44, 45, 50, or 51 in S2 resulted in a shift of carbohydrate recognition from lactosylceramide to gangliosides. Mutational exchange of amino acid residues 37-52 between S2 and S3 interchanged their carbohydrate and target cell specificity. Comparison of these carbohydrate recognition sequences to those of plant and animal lectins revealed that regions essential for function of the prokaryotic lectins were strongly related to a subset of eukaryotic carbohydrate recognition domains of the C type.
    Type of Medium: Online Resource
    ISSN: 0027-8424 , 1091-6490
    RVK:
    RVK:
    Language: English
    Publisher: Proceedings of the National Academy of Sciences
    Publication Date: 1992
    detail.hit.zdb_id: 209104-5
    detail.hit.zdb_id: 1461794-8
    SSG: 11
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...