GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    American Association for the Advancement of Science (AAAS) ; 2019
    In:  Science Vol. 365, No. 6451 ( 2019-07-26), p. 353-360
    In: Science, American Association for the Advancement of Science (AAAS), Vol. 365, No. 6451 ( 2019-07-26), p. 353-360
    Abstract: Histone modifications regulate gene expression and development. To address how they are reprogrammed in human early development, we investigated key histone marks in human oocytes and early embryos. Unlike that in mouse oocytes, the permissive mark trimethylated histone H3 lysine 4 (H3K4me3) largely exhibits canonical patterns at promoters in human oocytes. After fertilization, prezygotic genome activation (pre-ZGA) embryos acquire permissive chromatin and widespread H3K4me3 in CpG-rich regulatory regions. By contrast, the repressive mark H3K27me3 undergoes global depletion. CpG-rich regulatory regions then resolve to either active or repressed states upon ZGA, followed by subsequent restoration of H3K27me3 at developmental genes. Finally, by combining chromatin and transcriptome maps, we revealed transcription circuitry and asymmetric H3K27me3 patterning during early lineage specification. Collectively, our data unveil a priming phase connecting human parental-to-zygotic epigenetic transition.
    Type of Medium: Online Resource
    ISSN: 0036-8075 , 1095-9203
    RVK:
    RVK:
    Language: English
    Publisher: American Association for the Advancement of Science (AAAS)
    Publication Date: 2019
    detail.hit.zdb_id: 128410-1
    detail.hit.zdb_id: 2066996-3
    detail.hit.zdb_id: 2060783-0
    SSG: 11
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    Springer Science and Business Media LLC ; 2018
    In:  Journal of Psycholinguistic Research Vol. 47, No. 6 ( 2018-12), p. 1321-1341
    In: Journal of Psycholinguistic Research, Springer Science and Business Media LLC, Vol. 47, No. 6 ( 2018-12), p. 1321-1341
    Type of Medium: Online Resource
    ISSN: 0090-6905 , 1573-6555
    RVK:
    RVK:
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2018
    detail.hit.zdb_id: 2017227-8
    SSG: 5,2
    SSG: 7,11
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Behavior Genetics, Springer Science and Business Media LLC, Vol. 44, No. 2 ( 2014-3), p. 97-101
    Type of Medium: Online Resource
    ISSN: 0001-8244 , 1573-3297
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2014
    detail.hit.zdb_id: 2014974-8
    SSG: 12
    SSG: 5,2
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Online Resource
    Online Resource
    American Association for the Advancement of Science (AAAS) ; 2009
    In:  Science Vol. 324, No. 5934 ( 2009-06-19), p. 1565-1568
    In: Science, American Association for the Advancement of Science (AAAS), Vol. 324, No. 5934 ( 2009-06-19), p. 1565-1568
    Abstract: Virulent enteric pathogens such as Escherichia coli strain O157:H7 rely on acid-resistance (AR) systems to survive the acidic environment in the stomach. A major component of AR is an arginine-dependent arginine:agmatine antiporter that expels intracellular protons. Here, we report the crystal structure of AdiC, the arginine:agmatine antiporter from E. coli O157:H7 and a member of the amino acid/polyamine/organocation (APC) superfamily of transporters at 3.6 Å resolution. The overall fold is similar to that of several Na + -coupled symporters. AdiC contains 12 transmembrane segments, forms a homodimer, and exists in an outward-facing, open conformation in the crystals. A conserved, acidic pocket opens to the periplasm. Structural and biochemical analysis reveals the essential ligand-binding residues, defines the transport route, and suggests a conserved mechanism for the antiporter activity.
    Type of Medium: Online Resource
    ISSN: 0036-8075 , 1095-9203
    RVK:
    RVK:
    Language: English
    Publisher: American Association for the Advancement of Science (AAAS)
    Publication Date: 2009
    detail.hit.zdb_id: 128410-1
    detail.hit.zdb_id: 2066996-3
    detail.hit.zdb_id: 2060783-0
    SSG: 11
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Online Resource
    Online Resource
    American Association for the Advancement of Science (AAAS) ; 2012
    In:  Science Vol. 335, No. 6069 ( 2012-02-10), p. 720-723
    In: Science, American Association for the Advancement of Science (AAAS), Vol. 335, No. 6069 ( 2012-02-10), p. 720-723
    Abstract: TAL (transcription activator–like) effectors, secreted by phytopathogenic bacteria, recognize host DNA sequences through a central domain of tandem repeats. Each repeat comprises 33 to 35 conserved amino acids and targets a specific base pair by using two hypervariable residues [known as repeat variable diresidues (RVDs)] at positions 12 and 13. Here, we report the crystal structures of an 11.5-repeat TAL effector in both DNA-free and DNA-bound states. Each TAL repeat comprises two helices connected by a short RVD-containing loop. The 11.5 repeats form a right-handed, superhelical structure that tracks along the sense strand of DNA duplex, with RVDs contacting the major groove. The 12th residue stabilizes the RVD loop, whereas the 13th residue makes a base-specific contact. Understanding DNA recognition by TAL effectors may facilitate rational design of DNA-binding proteins with biotechnological applications.
    Type of Medium: Online Resource
    ISSN: 0036-8075 , 1095-9203
    RVK:
    RVK:
    Language: English
    Publisher: American Association for the Advancement of Science (AAAS)
    Publication Date: 2012
    detail.hit.zdb_id: 128410-1
    detail.hit.zdb_id: 2066996-3
    detail.hit.zdb_id: 2060783-0
    SSG: 11
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Online Resource
    Online Resource
    American Association for the Advancement of Science (AAAS) ; 2022
    In:  Science Vol. 377, No. 6604 ( 2022-07-22), p. 437-440
    In: Science, American Association for the Advancement of Science (AAAS), Vol. 377, No. 6604 ( 2022-07-22), p. 437-440
    Abstract: Boron arsenide is a semiconductor with high thermal conductivity and electron-hole mobility.
    Type of Medium: Online Resource
    ISSN: 0036-8075 , 1095-9203
    RVK:
    RVK:
    Language: English
    Publisher: American Association for the Advancement of Science (AAAS)
    Publication Date: 2022
    detail.hit.zdb_id: 128410-1
    detail.hit.zdb_id: 2066996-3
    detail.hit.zdb_id: 2060783-0
    SSG: 11
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Online Resource
    Online Resource
    Proceedings of the National Academy of Sciences ; 2020
    In:  Proceedings of the National Academy of Sciences Vol. 117, No. 27 ( 2020-07-07), p. 15809-15817
    In: Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, Vol. 117, No. 27 ( 2020-07-07), p. 15809-15817
    Abstract: Src family kinase Lck plays critical roles during T cell development and activation, as it phosphorylates the TCR/CD3 complex to initiate TCR signaling. Lck is present either in coreceptor-bound or coreceptor-unbound (free) forms, and we here present evidence that the two pools of Lck have different molecular properties. We discovered that the free Lck fraction exhibited higher mobility than CD8α-bound Lck in OT-I T hybridoma cells. The free Lck pool showed more activating Y394 phosphorylation than the coreceptor-bound Lck pool. Consistent with this, free Lck also had higher kinase activity, and free Lck mediated higher T cell activation as compared to coreceptor-bound Lck. Furthermore, the coreceptor-Lck coupling was independent of TCR activation. These findings give insights into the initiation of TCR signaling, suggesting that changes in coreceptor-Lck coupling constitute a mechanism for regulation of T cell sensitivity.
    Type of Medium: Online Resource
    ISSN: 0027-8424 , 1091-6490
    RVK:
    RVK:
    Language: English
    Publisher: Proceedings of the National Academy of Sciences
    Publication Date: 2020
    detail.hit.zdb_id: 209104-5
    detail.hit.zdb_id: 1461794-8
    SSG: 11
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Online Resource
    Online Resource
    Proceedings of the National Academy of Sciences ; 2009
    In:  Proceedings of the National Academy of Sciences Vol. 106, No. 35 ( 2009-09), p. 14837-14842
    In: Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, Vol. 106, No. 35 ( 2009-09), p. 14837-14842
    Abstract: Regulated intramembrane proteolysis (RIP) by the Site-2 protease (S2P) results in the release of a transmembrane signaling protein. Curiously, however, S2P cleavage must be preceded by the action of the Site-1 protease (S1P). To decipher the underlying mechanism, we reconstituted sequential, in vitro cleavages of the Escherichia coli transmembrane protein RseA by DegS (S1P) and RseP (S2P). After DegS cleavage, the newly exposed carboxyl-terminal residue Val-148 of RseA plays an essential role for RseP cleavage, and its mutation to charged or dissimilar amino acids crippled the Site-2 cleavage. By contrast, the identity of residues 146 and 147 of RseA has no impact on Site-2 cleavage. These results explain why Site-1 cleavage must precede Site-2 cleavage. Structural analysis reveals that the putative peptide-binding groove in the second, but not the first, PDZ domain of RseP is poised for binding to a single hydrophobic amino acid. These observations suggest that after DegS cleavage, the newly exposed carboxyl terminus of RseA may facilitate Site-2 cleavage through direct interaction with the PDZ domain.
    Type of Medium: Online Resource
    ISSN: 0027-8424 , 1091-6490
    RVK:
    RVK:
    Language: English
    Publisher: Proceedings of the National Academy of Sciences
    Publication Date: 2009
    detail.hit.zdb_id: 209104-5
    detail.hit.zdb_id: 1461794-8
    SSG: 11
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Online Resource
    Online Resource
    Proceedings of the National Academy of Sciences ; 2015
    In:  Proceedings of the National Academy of Sciences Vol. 112, No. 11 ( 2015-03-17), p. 3344-3349
    In: Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, Vol. 112, No. 11 ( 2015-03-17), p. 3344-3349
    Abstract: Aberrant cleavage of amyloid precursor protein (APP) by γ-secretase contributes to the development of Alzheimer’s disease. More than 200 disease-derived mutations have been identified in presenilin (the catalytic subunit of γ-secretase), making modulation of γ-secretase activity a potentially attractive therapeutic opportunity. Unfortunately, the technical challenges in dealing with intact γ-secretase have hindered discovery of modulators and demand a convenient substitute approach. Here we report that, similar to γ-secretase, the archaeal presenilin homolog PSH faithfully processes the substrate APP C99 into Aβ42, Aβ40, and Aβ38. The molar ratio of the cleavage products Aβ42 over Aβ40 by PSH is nearly identical to that by γ-secretase. The proteolytic activity of PSH is specifically suppressed by presenilin-specific inhibitors. Known modulators of γ-secretase also modulate PSH similarly in terms of the Aβ42/Aβ40 ratio. Structural analysis reveals association of a known γ-secretase inhibitor with PSH between its two catalytic aspartate residues. These findings identify PSH as a surrogate protease for the screening of agents that may regulate the protease activity and the cleavage preference of γ-secretase.
    Type of Medium: Online Resource
    ISSN: 0027-8424 , 1091-6490
    RVK:
    RVK:
    Language: English
    Publisher: Proceedings of the National Academy of Sciences
    Publication Date: 2015
    detail.hit.zdb_id: 209104-5
    detail.hit.zdb_id: 1461794-8
    SSG: 11
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Online Resource
    Online Resource
    Proceedings of the National Academy of Sciences ; 2018
    In:  Proceedings of the National Academy of Sciences Vol. 115, No. 15 ( 2018-04-10), p. 3828-3833
    In: Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, Vol. 115, No. 15 ( 2018-04-10), p. 3828-3833
    Abstract: Lysyl oxidases (LOXs), a type of copper- and lysyl tyrosylquinone (LTQ) -dependent amine oxidase, catalyze the oxidative deamination of lysine residues of extracellular matrix (ECM) proteins such as elastins and collagens and generate aldehyde groups. The oxidative deamination of lysine represents the foundational step for the cross-linking of elastin and collagen and thus is crucial for ECM modeling. Despite their physiological significance, the structure of this important family of enzymes remains elusive. Here we report the crystal structure of human lysyl oxidase-like 2 (hLOXL2) at 2.4-Å resolution. Unexpectedly, the copper-binding site of hLOXL2 is occupied by zinc, which blocks LTQ generation and the enzymatic activity of hLOXL2 in our in vitro assay. Biochemical analysis confirms that copper loading robustly activates hLOXL2 and supports LTQ formation. Furthermore, the LTQ precursor residues in the structure are distanced by 16.6 Å, corroborating the notion that the present structure may represent a precursor state and that pronounced conformational rearrangements would be required for protein activation. The structure presented here establishes an important foundation for understanding the structure–function relationship of LOX proteins and will facilitate LOX-targeting drug discovery.
    Type of Medium: Online Resource
    ISSN: 0027-8424 , 1091-6490
    RVK:
    RVK:
    Language: English
    Publisher: Proceedings of the National Academy of Sciences
    Publication Date: 2018
    detail.hit.zdb_id: 209104-5
    detail.hit.zdb_id: 1461794-8
    SSG: 11
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...