GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    Proceedings of the National Academy of Sciences ; 2018
    In:  Proceedings of the National Academy of Sciences Vol. 115, No. 33 ( 2018-08-14)
    In: Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, Vol. 115, No. 33 ( 2018-08-14)
    Abstract: We report natural light–oxygen–voltage (LOV) photoreceptors with a blue light-switched, high-affinity ( K D ∼ 10 −7 M), and direct electrostatic interaction with anionic phospholipids. Membrane localization of one such photoreceptor, BcLOV4 from Botrytis cinerea , is directly coupled to its flavin photocycle, and is mediated by a polybasic amphipathic helix in the linker region between the LOV sensor and its C-terminal domain of unknown function (DUF), as revealed through a combination of bioinformatics, computational protein modeling, structure–function studies, and optogenetic assays in yeast and mammalian cell line expression systems. In model systems, BcLOV4 rapidly translocates from the cytosol to plasma membrane (∼1 second). The reversible electrostatic interaction is nonselective among anionic phospholipids, exhibiting binding strengths dependent on the total anionic content of the membrane without preference for a specific headgroup. The in vitro and cellular responses were also observed with a BcLOV4 homolog and thus are likely to be general across the dikarya LOV class, whose members are associated with regulator of G-protein signaling (RGS) domains. Natural photoreceptors are not previously known to directly associate with membrane phospholipids in a light-dependent manner, and thus this work establishes both a photosensory signal transmission mode and a single-component optogenetic tool with rapid membrane localization kinetics that approaches the diffusion limit.
    Type of Medium: Online Resource
    ISSN: 0027-8424 , 1091-6490
    RVK:
    RVK:
    Language: English
    Publisher: Proceedings of the National Academy of Sciences
    Publication Date: 2018
    detail.hit.zdb_id: 209104-5
    detail.hit.zdb_id: 1461794-8
    SSG: 11
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, Vol. 117, No. 21 ( 2020-05-26), p. 11421-11431
    Abstract: Phase separation of intrinsically disordered proteins (IDPs) commonly underlies the formation of membraneless organelles, which compartmentalize molecules intracellularly in the absence of a lipid membrane. Identifying the protein sequence features responsible for IDP phase separation is critical for understanding physiological roles and pathological consequences of biomolecular condensation, as well as for harnessing phase separation for applications in bioinspired materials design. To expand our knowledge of sequence determinants of IDP phase separation, we characterized variants of the intrinsically disordered RGG domain from LAF-1, a model protein involved in phase separation and a key component of P granules. Based on a predictive coarse-grained IDP model, we identified a region of the RGG domain that has high contact probability and is highly conserved between species; deletion of this region significantly disrupts phase separation in vitro and in vivo. We determined the effects of charge patterning on phase behavior through sequence shuffling. We designed sequences with significantly increased phase separation propensity by shuffling the wild-type sequence, which contains well-mixed charged residues, to increase charge segregation. This result indicates the natural sequence is under negative selection to moderate this mode of interaction. We measured the contributions of tyrosine and arginine residues to phase separation experimentally through mutagenesis studies and computationally through direct interrogation of different modes of interaction using all-atom simulations. Finally, we show that despite these sequence perturbations, the RGG-derived condensates remain liquid-like. Together, these studies advance our fundamental understanding of key biophysical principles and sequence features important to phase separation.
    Type of Medium: Online Resource
    ISSN: 0027-8424 , 1091-6490
    RVK:
    RVK:
    Language: English
    Publisher: Proceedings of the National Academy of Sciences
    Publication Date: 2020
    detail.hit.zdb_id: 209104-5
    detail.hit.zdb_id: 1461794-8
    SSG: 11
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    Proceedings of the National Academy of Sciences ; 2021
    In:  Proceedings of the National Academy of Sciences Vol. 118, No. 51 ( 2021-12-21)
    In: Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, Vol. 118, No. 51 ( 2021-12-21)
    Abstract: Cells contain membraneless compartments that assemble due to liquid–liquid phase separation, including biomolecular condensates with complex morphologies. For instance, certain condensates are surrounded by a film of distinct composition, such as Ape1 condensates coated by a layer of Atg19, required for selective autophagy in yeast. Other condensates are multiphasic, with nested liquid phases of distinct compositions and functions, such as in the case of ribosome biogenesis in the nucleolus. The size and structure of such condensates must be regulated for proper biological function. We leveraged a bioinspired approach to discover how amphiphilic, surfactant-like proteins may contribute to the structure and size regulation of biomolecular condensates. We designed and examined families of amphiphilic proteins comprising one phase-separating domain and one non–phase-separating domain. In particular, these proteins contain the soluble structured domain glutathione S-transferase (GST) or maltose binding protein (MBP), fused to the intrinsically disordered RGG domain from P granule protein LAF-1. When one amphiphilic protein is mixed in vitro with RGG-RGG, the proteins assemble into enveloped condensates, with RGG-RGG at the core and the amphiphilic protein forming the surface film layer. Importantly, we found that MBP-based amphiphiles are surfactants and influence droplet size, with increasing surfactant concentration resulting in smaller droplet radii. In contrast, GST-based amphiphiles at increased concentrations coassemble with RGG-RGG into multiphasic structures. We propose a mechanism for these experimental observations, supported by molecular simulations of a minimalist model. We speculate that surfactant proteins may play a significant role in regulating the structure and function of biomolecular condensates.
    Type of Medium: Online Resource
    ISSN: 0027-8424 , 1091-6490
    RVK:
    RVK:
    Language: English
    Publisher: Proceedings of the National Academy of Sciences
    Publication Date: 2021
    detail.hit.zdb_id: 209104-5
    detail.hit.zdb_id: 1461794-8
    SSG: 11
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: Brain, Oxford University Press (OUP), Vol. 146, No. 3 ( 2023-03-01), p. 977-990
    Abstract: Autoimmune neurological syndromes (AINS) with autoantibodies against the 65 kDa isoform of the glutamic acid decarboxylase (GAD65) present with limbic encephalitis, including temporal lobe seizures or epilepsy, cerebellitis with ataxia, and stiff-person-syndrome or overlap forms. Anti-GAD65 autoantibodies are also detected in autoimmune diabetes mellitus, which has a strong genetic susceptibility conferred by human leukocyte antigen (HLA) and non-HLA genomic regions. We investigated the genetic predisposition in patients with anti-GAD65 AINS. We performed a genome-wide association study (GWAS) and an association analysis of the HLA region in a large German cohort of 1214 individuals. These included 167 patients with anti-GAD65 AINS, recruited by the German Network for Research on Autoimmune Encephalitis (GENERATE), and 1047 individuals without neurological or endocrine disease as population-based controls. Predictions of protein expression changes based on GWAS findings were further explored and validated in the CSF proteome of a virtually independent cohort of 10 patients with GAD65-AINS and 10 controls. Our GWAS identified 16 genome-wide significant (P & lt; 5 × 10−8) loci for the susceptibility to anti-GAD65 AINS. The top variant, rs2535288 [P = 4.42 × 10−16, odds ratio (OR) = 0.26, 95% confidence interval (CI) = 0.187–0.358], localized to an intergenic segment in the middle of the HLA class I region. The great majority of variants in these loci ( & gt;90%) mapped to non-coding regions of the genome. Over 40% of the variants have known regulatory functions on the expression of 48 genes in disease relevant cells and tissues, mainly CD4+ T cells and the cerebral cortex. The annotation of epigenomic marks suggested specificity for neural and immune cells. A network analysis of the implicated protein-coding genes highlighted the role of protein kinase C beta (PRKCB) and identified an enrichment of numerous biological pathways participating in immunity and neural function. Analysis of the classical HLA alleles and haplotypes showed no genome-wide significant associations. The strongest associations were found for the DQA1*03:01-DQB1*03:02-DRB1*04:01HLA haplotype (P = 4.39 × 10−4, OR = 2.5, 95%CI = 1.499–4.157) and DRB1*04:01 allele (P = 8.3 × 10−5, OR = 2.4, 95%CI = 1.548–3.682) identified in our cohort. As predicted, the CSF proteome showed differential levels of five proteins (HLA-A/B, C4A, ATG4D and NEO1) of expression quantitative trait loci genes from our GWAS in the CSF proteome of anti-GAD65 AINS. These findings suggest a strong genetic predisposition with direct functional implications for immunity and neural function in anti-GAD65 AINS, mainly conferred by genomic regions outside the classical HLA alleles.
    Type of Medium: Online Resource
    ISSN: 0006-8950 , 1460-2156
    RVK:
    Language: English
    Publisher: Oxford University Press (OUP)
    Publication Date: 2023
    detail.hit.zdb_id: 1474117-9
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    In: Brain, Oxford University Press (OUP), Vol. 146, No. 2 ( 2023-02-13), p. 600-611
    Abstract: Anti-IgLON5 disease is a newly defined clinical entity characterized by a progressive course with high disability and mortality rate. While precise pathogenetic mechanisms remain unclear, features characteristic of both autoimmune and neurodegenerative diseases were reported. Data on immunotherapy are limited, and its efficacy remains controversial. In this study, we retrospectively investigated an anti-IgLON5 disease cohort with special focus on clinical, serological and genetic predictors of the immunotherapy response and long-term outcome. Patients were recruited from the GENERATE (German Network for Research on Autoimmune Encephalitis) registry. Along with clinical parameters, anti-IgLON5 immunoglobulin (Ig)G in serum and CSF, anti-IgLON5 IgG1-4, IgA and IgM in serum, neurofilament light chain and glial fibrillary acidic protein in serum as well as human leukocyte antigen-genotypes were determined. We identified 53 patients (symptom onset 63.8 ± 10.3 years, female:male 1:1.5). The most frequent initial clinical presentations were bulbar syndrome, hyperkinetic syndrome or isolated sleep disorder [at least one symptom present in 38% (20/53)]. At the time of diagnosis, the majority of patients had a generalized multi-systemic phenotype; nevertheless, 21% (11/53) still had an isolated brainstem syndrome and/ or a characteristic sleep disorder only. About one third of patients [28% (15/53)] reported subacute disease onset and 51% (27/53) relapse-like exacerbations during the disease course. Inflammatory CSF changes were evident in 37% (19/51) and increased blood-CSF-barrier permeability in 46% (21/46). CSF cell count significantly decreased, while serum anti-IgLON5 IgG titre increased with disease duration. The presence of human leukocyte antigen-DRB1*10:01 [55% (24/44)] was associated with higher serum anti-IgLON5 IgG titres. Neurofilament light chain and glial fibrillary acidic protein in serum were substantially increased (71.1 ± 103.9 pg/ml and 126.7 ± 73.3 pg/ml, respectively). First-line immunotherapy of relapse-like acute-to-subacute exacerbation episodes resulted in improvement in 41% (11/27) of patients and early initiation within the first 6 weeks was a predictor for therapy response. Sixty-eight per cent (36/53) of patients were treated with long-term immunotherapy and 75% (27/36) of these experienced no further disease progression (observation period of 20.2 ± 15.4 months). Long-term immunotherapy initiation during the first year after onset and low pre-treatment neurofilament light chain were significant predictors for a better outcome. In conclusion, subacute disease onset and early inflammatory CSF changes support the primary role of autoimmune mechanisms at least at initial stages of anti-IgLON5 disease. Early immunotherapy, prior to advanced neurodegeneration, is associated with a better long-term clinical outcome. Low serum neurofilament light chain at treatment initiation may serve as a potential biomarker of the immunotherapy response.
    Type of Medium: Online Resource
    ISSN: 0006-8950 , 1460-2156
    RVK:
    Language: English
    Publisher: Oxford University Press (OUP)
    Publication Date: 2023
    detail.hit.zdb_id: 1474117-9
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...