GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    Proceedings of the National Academy of Sciences ; 2018
    In:  Proceedings of the National Academy of Sciences Vol. 115, No. 16 ( 2018-04-17), p. 4021-4026
    In: Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, Vol. 115, No. 16 ( 2018-04-17), p. 4021-4026
    Abstract: China’s terrestrial ecosystems have functioned as important carbon sinks. However, previous estimates of carbon budgets have included large uncertainties owing to the limitations of sample size, multiple data sources, and inconsistent methodologies. In this study, we conducted an intensive field campaign involving 14,371 field plots to investigate all sectors of carbon stocks in China’s forests, shrublands, grasslands, and croplands to better estimate the regional and national carbon pools and to explore the biogeographical patterns and potential drivers of these pools. The total carbon pool in these four ecosystems was 79.24 ± 2.42 Pg C, of which 82.9% was stored in soil (to a depth of 1 m), 16.5% in biomass, and 0.60% in litter. Forests, shrublands, grasslands, and croplands contained 30.83 ± 1.57 Pg C, 6.69 ± 0.32 Pg C, 25.40 ± 1.49 Pg C, and 16.32 ± 0.41 Pg C, respectively. When all terrestrial ecosystems are taken into account, the country’s total carbon pool is 89.27 ± 1.05 Pg C. The carbon density of the forests, shrublands, and grasslands exhibited a strong correlation with climate: it decreased with increasing temperature but increased with increasing precipitation. Our analysis also suggests a significant sequestration potential of 1.9–3.4 Pg C in forest biomass in the next 10–20 years assuming no removals, mainly because of forest growth. Our results update the estimates of carbon pools in China’s terrestrial ecosystems based on direct field measurements, and these estimates are essential to the validation and parameterization of carbon models in China and globally.
    Type of Medium: Online Resource
    ISSN: 0027-8424 , 1091-6490
    RVK:
    RVK:
    Language: English
    Publisher: Proceedings of the National Academy of Sciences
    Publication Date: 2018
    detail.hit.zdb_id: 209104-5
    detail.hit.zdb_id: 1461794-8
    SSG: 11
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Science, American Association for the Advancement of Science (AAAS), Vol. 362, No. 6410 ( 2018-10-05), p. 80-83
    Abstract: Biodiversity experiments have shown that species loss reduces ecosystem functioning in grassland. To test whether this result can be extrapolated to forests, the main contributors to terrestrial primary productivity, requires large-scale experiments. We manipulated tree species richness by planting more than 150,000 trees in plots with 1 to 16 species. Simulating multiple extinction scenarios, we found that richness strongly increased stand-level productivity. After 8 years, 16-species mixtures had accumulated over twice the amount of carbon found in average monocultures and similar amounts as those of two commercial monocultures. Species richness effects were strongly associated with functional and phylogenetic diversity. A shrub addition treatment reduced tree productivity, but this reduction was smaller at high shrub species richness. Our results encourage multispecies afforestation strategies to restore biodiversity and mitigate climate change.
    Type of Medium: Online Resource
    ISSN: 0036-8075 , 1095-9203
    RVK:
    RVK:
    Language: English
    Publisher: American Association for the Advancement of Science (AAAS)
    Publication Date: 2018
    detail.hit.zdb_id: 128410-1
    detail.hit.zdb_id: 2066996-3
    detail.hit.zdb_id: 2060783-0
    SSG: 11
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...