GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, Vol. 117, No. 5 ( 2020-02-04), p. 2560-2569
    Abstract: De novo mutations (DNMs), or mutations that appear in an individual despite not being seen in their parents, are an important source of genetic variation whose impact is relevant to studies of human evolution, genetics, and disease. Utilizing high-coverage whole-genome sequencing data as part of the Trans-Omics for Precision Medicine (TOPMed) Program, we called 93,325 single-nucleotide DNMs across 1,465 trios from an array of diverse human populations, and used them to directly estimate and analyze DNM counts, rates, and spectra. We find a significant positive correlation between local recombination rate and local DNM rate, and that DNM rate explains a substantial portion (8.98 to 34.92%, depending on the model) of the genome-wide variation in population-level genetic variation from 41K unrelated TOPMed samples. Genome-wide heterozygosity does correlate with DNM rate, but only explains 〈 1% of variation. While we are underpowered to see small differences, we do not find significant differences in DNM rate between individuals of European, African, and Latino ancestry, nor across ancestrally distinct segments within admixed individuals. However, we did find significantly fewer DNMs in Amish individuals, even when compared with other Europeans, and even after accounting for parental age and sequencing center. Specifically, we found significant reductions in the number of C→A and T→C mutations in the Amish, which seem to underpin their overall reduction in DNMs. Finally, we calculated near-zero estimates of narrow sense heritability ( h 2 ), which suggest that variation in DNM rate is significantly shaped by nonadditive genetic effects and the environment.
    Type of Medium: Online Resource
    ISSN: 0027-8424 , 1091-6490
    RVK:
    RVK:
    Language: English
    Publisher: Proceedings of the National Academy of Sciences
    Publication Date: 2020
    detail.hit.zdb_id: 209104-5
    detail.hit.zdb_id: 1461794-8
    SSG: 11
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, Vol. 99, No. 21 ( 2002-10-15), p. 13498-13503
    Abstract: By using a cre-lox conditional knockout strategy, we report here the generation of androgen receptor knockout (ARKO) mice. Phenotype analysis shows that ARKO male mice have a female-like appearance and body weight. Their testes are 80% smaller and serum testosterone concentrations are lower than in wild-type (wt) mice. Spermatogenesis is arrested at pachytene spermatocytes. The number and size of adipocytes are also different between the wt and ARKO mice. Cancellous bone volumes of ARKO male mice are reduced compared with wt littermates. In addition, we found the average number of pups per litter in homologous and heterozygous ARKO female mice is lower than in wt female mice, suggesting potential defects in female fertility and/or ovulation. The cre-lox ARKO mouse provides a much-needed in vivo animal model to study androgen functions in the selective androgen target tissues in female or male mice.
    Type of Medium: Online Resource
    ISSN: 0027-8424 , 1091-6490
    RVK:
    RVK:
    Language: English
    Publisher: Proceedings of the National Academy of Sciences
    Publication Date: 2002
    detail.hit.zdb_id: 209104-5
    detail.hit.zdb_id: 1461794-8
    SSG: 11
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Science, American Association for the Advancement of Science (AAAS), Vol. 379, No. 6637 ( 2023-03-17)
    Abstract: Autoimmune diseases such as ankylosing spondylitis (AS) can be caused by emerging neoantigens that break immune tolerance in humans. Posttranslational modifications (PTMs) have been shown to be a critical mechanism that alters protein structure and function to generate neoantigens and induce subsequent autoimmune responses. Previous studies have confirmed that citrulline-modified peptides are a critical source of neoantigens in rheumatoid arthritis. However, the molecular mechanisms underlying neoantigen formation and pathogenic autoreactive responses for AS are largely unknown. There is an urgent need to develop a systematic approach to profiling the possible PTMs in patients with AS and identifying AS-associated PTMs responsible for autoreactive neoantigen production to better understand the etiology of autoimmune diseases. RATIONALE AS has been suggested to be an autoimmune disease because of its clear correlation with certain major histocompatibility complex (MHC) alleles, including HLA-B27. Neoantigens have been hypothesized to induce an aberrant immune response, leading to pathogenic autoreactive T cell responses and autoantibody generation in AS. Here, we developed a systematic open search approach to identify any possible amino acid residues and derivatives in the proteins that are different from the genomic coding sequences. We then applied this information to identify AS-related neoantigens with PTMs within a possible pool of PTM autoantigens and elucidate the pathogenesis of AS. RESULTS An open search approach was applied to identify any possible amino acid derivatives across the proteome of patients with AS. This approach generated a large set of noncoded amino acids representing the mass differences between the coded amino acids and actual residues. Among these, an amino acid derivative with a delta mass of 72.021 showed the greatest increase in patients with AS and resulted from a PTM called cysteine carboxyethylation. In vitro and in vivo experiments demonstrated that carboxyethylation at a cysteine residue of integrin αIIb [ITGA2B (CD41)] was catalyzed by cystathionine beta synthase (CBS) in a process that required 3-hydroxypropionic acid (3-HPA), a metabolite commonly released from gut microbes. Cysteine carboxyethylation induced the lysosomal degradation of ITGA2B and produced neoantigens that triggered MHC-II–dependent CD4 + T cell responses. Fluorescence polarization and enzyme-linked immunosorbent assay (ELISA) demonstrated that the identified carboxyethylated peptide (ITGA2B-ceC96) specifically interacted with HLA-DRA*01/HLA-DRB1*04 and was associated with autoantibody production and T cell responses in HLA-DRB1*04 patients. Additional in vitro assays showed that the neoantigen ITGA2B-ceC96 correlated with 3-HPA levels but was independent of CBS expression. HLA-DRB1 haplotype, the carboxyethylated peptide, specific autoantibodies, and 3-HPA levels in patients with AS all correlated with one another. 3-HPA–treated and ITGA2B-ceC96–immunized HLA-DR4 transgenic mice developed colitis and vertebral bone erosion. Thus, cysteine carboxyethylation induced by the metabolite 3-HPA generates a neoantigen that appears to be critical for autoimmune responses in patients with AS. CONCLUSION Cysteine carboxyethylation is an in vivo protein modification induced by the metabolite 3-HPA, which is commonly released from gut microbes. Carboxyethylated ITGA2B then induces autoantibody production and autoimmune response in AS. Our work provides a systematic workflow to identify differentially modified proteins that are important for neoantigen production in immune disorders. This approach furthers our understanding of AS pathogenesis and may aid in the development of neoantigen-based diagnosis and treatment for AS and other autoimmune diseases. Metabolite-induced cysteine carboxyethylation provokes HLA-restricted autoimmune responses in ankylosing spondylitis. 3-HPA, which is commonly obtained from food and gut microbes, induces carboxyethylation of cysteine residues in integrin αIIb (ITGA2B). Cysteine carboxyethylation requires CBS, and carboxyethylated ITGA2B (ITGA2B-ceC96) peptides are recruited to the HLA-DR4 complex and thereby stimulate CD4 + T cell responses closely related to AS.
    Type of Medium: Online Resource
    ISSN: 0036-8075 , 1095-9203
    RVK:
    RVK:
    Language: English
    Publisher: American Association for the Advancement of Science (AAAS)
    Publication Date: 2023
    detail.hit.zdb_id: 128410-1
    detail.hit.zdb_id: 2066996-3
    detail.hit.zdb_id: 2060783-0
    SSG: 11
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: Science, American Association for the Advancement of Science (AAAS), Vol. 377, No. 6603 ( 2022-07-15)
    Abstract: B.1.1.529 (Omicron) and its subvariants pose new challenges for control of the COVID-19 pandemic. Although vaccinated populations are relatively protected from severe disease and death, countries with high vaccine uptake are experiencing substantial caseloads with breakthrough infection and frequent reinfection. RATIONALE We analyzed cross-protective immunity against B.1.1.529 (Omicron) in triple-vaccinated health care workers (HCWs) with different immune-imprinted histories of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection during the ancestral Wuhan Hu-1, B.1.1.7 (Alpha), and B.1.617.2 (Delta) waves and after infection during the B.1.1.529 (Omicron) wave in previously infection-naïve individuals and those with hybrid immunity, to investigate whether B.1.1.529 (Omicron) infection could further boost adaptive immunity. Spike subunit 1 (S1) receptor binding domain (RBD) and whole spike binding, live virus neutralizing antibody (nAb) potency, memory B cell (MBC) frequency, and T cell responses against peptide pools and naturally processed antigen were assessed. RESULTS B and T cell recognition and nAb potency were boosted against previous variants of concern (VOCs) in triple-vaccinated HCWs, but this enhanced immunity was attenuated against B.1.1.529 (Omicron) itself. Furthermore, immune imprinting after B.1.1.7 (Alpha) infection resulted in reduced durability of antibody binding against B.1.1.529 (Omicron), and S1 RBD and whole spike VOC binding correlated poorly with live virus nAb potency. Half of triple-vaccinated HCWs showed no T cell response to B.1.1.529 (Omicron) S1 processed antigen, and all showed reduced responses to the B.1.1.529 (Omicron) peptide pool, irrespective of SARS-CoV-2 infection history. Mapping T cell immunity in class II human leukocyte antigen transgenics showed that individual spike mutations could result in loss or gain of T cell epitope recognition, with changes to T cell effector and regulatory programs. Triple-vaccinated, previously infection-naïve individuals infected during the B.1.1.529 (Omicron) wave showed boosted cross-reactive S1 RBD and whole spike binding, live virus nAb potency, and T cell immunity against previous VOCs but less so against B.1.1.529 (Omicron) itself. Immune imprinting from prior Wuhan Hu-1 infection abrogated any enhanced cross-reactive antibody binding, T cell recognition, MBC frequency, or nAb potency after B.1.1.529 (Omicron) infection. CONCLUSION Vaccine boosting results in distinct, imprinted patterns of hybrid immunity with different combinations of SARS-CoV-2 infection and vaccination. Immune protection is boosted by B.1.1.529 (Omicron) infection in the triple-vaccinated, previously infection-naïve individuals, but this boosting is lost with prior Wuhan Hu-1 imprinting. This “hybrid immune damping” indicates substantial subversion of immune recognition and differential modulation through immune imprinting and may be the reason why the B.1.1.529 (Omicron) wave has been characterized by breakthrough infection and frequent reinfection with relatively preserved protection against severe disease in triple-vaccinated individuals. Hybrid immune damping. ( A ) Triple-vaccinated HCWs with different SARS-CoV-2 infection histories show boosted cross-reactive immunity against VOCs, less so against Omicron. ( B ) Breakthrough infection during the Omicron wave boosts cross-reactive immunity in triple-vaccinated, previously infection-naïve individuals against VOCs, less so against Omicron itself; imprinting by previous Wuhan Hu-1 infection ablates Omicron immune boosting. ( C ) T cell recognition of Omicron mutation sequences is linked to altered transcription.
    Type of Medium: Online Resource
    ISSN: 0036-8075 , 1095-9203
    RVK:
    RVK:
    Language: English
    Publisher: American Association for the Advancement of Science (AAAS)
    Publication Date: 2022
    detail.hit.zdb_id: 128410-1
    detail.hit.zdb_id: 2066996-3
    detail.hit.zdb_id: 2060783-0
    SSG: 11
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    In: Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, Vol. 116, No. 47 ( 2019-11-19), p. 23426-23436
    Abstract: As a central feature of neuroinflammation, microglial dysfunction has been increasingly considered a causative factor of neurodegeneration implicating an intertwined pathology with amyloidogenic proteins. Herein, we report the smallest synthetic molecule ( N , N ′-diacetyl- p -phenylenediamine [DAPPD]), simply composed of a benzene ring with 2 acetamide groups at the para position, known to date as a chemical reagent that is able to promote the phagocytic aptitude of microglia and subsequently ameliorate cognitive defects. Based on our mechanistic investigations in vitro and in vivo, 1) the capability of DAPPD to restore microglial phagocytosis is responsible for diminishing the accumulation of amyloid-β (Aβ) species and significantly improving cognitive function in the brains of 2 types of Alzheimer’s disease (AD) transgenic mice, and 2) the rectification of microglial function by DAPPD is a result of its ability to suppress the expression of NLRP3 inflammasome-associated proteins through its impact on the NF-κB pathway. Overall, our in vitro and in vivo investigations on efficacies and molecular-level mechanisms demonstrate the ability of DAPPD to regulate microglial function, suppress neuroinflammation, foster cerebral Aβ clearance, and attenuate cognitive deficits in AD transgenic mouse models. Discovery of such antineuroinflammatory compounds signifies the potential in discovering effective therapeutic molecules against AD-associated neurodegeneration.
    Type of Medium: Online Resource
    ISSN: 0027-8424 , 1091-6490
    RVK:
    RVK:
    Language: English
    Publisher: Proceedings of the National Academy of Sciences
    Publication Date: 2019
    detail.hit.zdb_id: 209104-5
    detail.hit.zdb_id: 1461794-8
    SSG: 11
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Online Resource
    Online Resource
    Proceedings of the National Academy of Sciences ; 2020
    In:  Proceedings of the National Academy of Sciences Vol. 117, No. 47 ( 2020-11-24), p. 29775-29785
    In: Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, Vol. 117, No. 47 ( 2020-11-24), p. 29775-29785
    Abstract: Goldfish have been subjected to over 1,000 y of intensive domestication and selective breeding. In this report, we describe a high-quality goldfish genome (2n = 100), anchoring 95.75% of contigs into 50 pseudochromosomes. Comparative genomics enabled us to disentangle the two subgenomes that resulted from an ancient hybridization event. Resequencing 185 representative goldfish variants and 16 wild crucian carp revealed the origin of goldfish and identified genomic regions that have been shaped by selective sweeps linked to its domestication. Our comprehensive collection of goldfish varieties enabled us to associate genetic variations with a number of well-known anatomical features, including features that distinguish traditional goldfish clades. Additionally, we identified a tyrosine-protein kinase receptor as a candidate causal gene for the first well-known case of Mendelian inheritance in goldfish—the transparent mutant. The goldfish genome and diversity data offer unique resources to make goldfish a promising model for functional genomics, as well as domestication.
    Type of Medium: Online Resource
    ISSN: 0027-8424 , 1091-6490
    RVK:
    RVK:
    Language: English
    Publisher: Proceedings of the National Academy of Sciences
    Publication Date: 2020
    detail.hit.zdb_id: 209104-5
    detail.hit.zdb_id: 1461794-8
    SSG: 11
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    In: Psychophysiology, Wiley, Vol. 58, No. 7 ( 2021-07)
    Abstract: Understanding which brain areas are associated with autonomic function has important clinical implications. Previous research was limited to small samples. Aiming for a thorough and large replication, we investigated n  = 1,218 healthy subjects in a pooled mega‐analysis. We found unique associations between vagal activity and cortical thickness of frontal brain areas. It is suggested that greater integrity of prefrontal brain areas may be vital for the maintenance of adaptive autonomic nervous system activity in aging.
    Type of Medium: Online Resource
    ISSN: 0048-5772 , 1469-8986
    URL: Issue
    RVK:
    Language: English
    Publisher: Wiley
    Publication Date: 2021
    detail.hit.zdb_id: 1484299-3
    SSG: 5,2
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    In: Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, Vol. 117, No. 18 ( 2020-05-05), p. 9733-9740
    Abstract: Isoprene has the highest emission into Earth’s atmosphere of any nonmethane hydrocarbon. Atmospheric processing of alkenes, including isoprene, via ozonolysis leads to the formation of zwitterionic reactive intermediates, known as Criegee intermediates (CIs). Direct studies have revealed that reactions involving simple CIs can significantly impact the tropospheric oxidizing capacity, enhance particulate formation, and degrade local air quality. Methyl vinyl ketone oxide (MVK-oxide) is a four-carbon, asymmetric, resonance-stabilized CI, produced with 21 to 23% yield from isoprene ozonolysis, yet its reactivity has not been directly studied. We present direct kinetic measurements of MVK-oxide reactions with key atmospheric species using absorption spectroscopy. Direct UV-Vis absorption spectra from two independent flow cell experiments overlap with the molecular beam UV-Vis-depletion spectra reported recently [M. F. Vansco, B. Marchetti, M. I. Lester, J. Chem. Phys. 149, 44309 (2018)] but suggest different conformer distributions under jet-cooled and thermal conditions. Comparison of the experimental lifetime herein with theory indicates only the syn -conformers are observed; anti -conformers are calculated to be removed much more rapidly via unimolecular decay. We observe experimentally and predict theoretically fast reaction of syn -MVK-oxide with SO 2 and formic acid, similar to smaller alkyl-substituted CIs, and by contrast, slow removal in the presence of water. We determine products through complementary multiplexed photoionization mass spectrometry, observing SO 3 and identifying organic hydroperoxide formation from reaction with SO 2 and formic acid, respectively. The tropospheric implications of these reactions are evaluated using a global chemistry and transport model.
    Type of Medium: Online Resource
    ISSN: 0027-8424 , 1091-6490
    RVK:
    RVK:
    Language: English
    Publisher: Proceedings of the National Academy of Sciences
    Publication Date: 2020
    detail.hit.zdb_id: 209104-5
    detail.hit.zdb_id: 1461794-8
    SSG: 11
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Online Resource
    Online Resource
    American Association for the Advancement of Science (AAAS) ; 2017
    In:  Science Vol. 355, No. 6329 ( 2017-03-10)
    In: Science, American Association for the Advancement of Science (AAAS), Vol. 355, No. 6329 ( 2017-03-10)
    Abstract: Perfect matching of an assembled physical sequence to a specified designed sequence is crucial to verify design principles in genome synthesis. We designed and de novo synthesized 536,024–base pair chromosome synV in the “Build-A-Genome China” course. We corrected an initial isolate of synV to perfectly match the designed sequence using integrative cotransformation and clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9)–mediated editing in 22 steps; synV strains exhibit high fitness under a variety of culture conditions, compared with that of wild-type V strains. A ring synV derivative was constructed, which is fully functional in Saccharomyces cerevisiae under all conditions tested and exhibits lower spore viability during meiosis. Ring synV chromosome can extends Sc2.0 design principles and provides a model with which to study genomic rearrangement, ring chromosome evolution, and human ring chromosome disorders.
    Type of Medium: Online Resource
    ISSN: 0036-8075 , 1095-9203
    RVK:
    RVK:
    Language: English
    Publisher: American Association for the Advancement of Science (AAAS)
    Publication Date: 2017
    detail.hit.zdb_id: 128410-1
    detail.hit.zdb_id: 2066996-3
    detail.hit.zdb_id: 2060783-0
    SSG: 11
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    In: Science, American Association for the Advancement of Science (AAAS), Vol. 335, No. 6064 ( 2012-01-06), p. 89-92
    Abstract: Lysosomal storage diseases (LSDs) are a group of heterogeneous disorders caused by defects in lysosomal enzymes or transporters, resulting in accumulation of undegraded macromolecules or metabolites. Macrophage numbers are expanded in several LSDs, leading to histiocytosis of unknown pathophysiology. Here, we found that mice lacking the equilibrative nucleoside transporter 3 (ENT3) developed a spontaneous and progressive macrophage-dominated histiocytosis. In the absence of ENT3, defective apoptotic cell clearance led to lysosomal nucleoside buildup, elevated intralysosomal pH, and altered macrophage function. The macrophage accumulation was partly due to increased macrophage colony-stimulating factor and receptor expression and signaling secondary to the lysosomal defects. These studies suggest a cellular and molecular basis for the development of histiocytosis in several human syndromes associated with ENT3 mutations and potentially other LSDs.
    Type of Medium: Online Resource
    ISSN: 0036-8075 , 1095-9203
    RVK:
    RVK:
    Language: English
    Publisher: American Association for the Advancement of Science (AAAS)
    Publication Date: 2012
    detail.hit.zdb_id: 128410-1
    detail.hit.zdb_id: 2066996-3
    detail.hit.zdb_id: 2060783-0
    SSG: 11
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...