GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    American Association for the Advancement of Science (AAAS) ; 2021
    In:  Science Vol. 373, No. 6555 ( 2021-08-06), p. 662-673
    In: Science, American Association for the Advancement of Science (AAAS), Vol. 373, No. 6555 ( 2021-08-06), p. 662-673
    Abstract: The functional role of long noncoding RNAs (lncRNAs) in inherited metabolic disorders, including phenylketonuria (PKU), is unknown. Here, we demonstrate that the mouse lncRNA Pair and human HULC associate with phenylalanine hydroxylase (PAH). Pair -knockout mice exhibited excessive blood phenylalanine (Phe), musty odor, hypopigmentation, growth retardation, and progressive neurological symptoms including seizures, which faithfully models human PKU. HULC depletion led to reduced PAH enzymatic activities in human induced pluripotent stem cell–differentiated hepatocytes. Mechanistically, HULC modulated the enzymatic activities of PAH by facilitating PAH-substrate and PAH-cofactor interactions. To develop a therapeutic strategy for restoring liver lncRNAs, we designed GalNAc-tagged lncRNA mimics that exhibit liver enrichment. Treatment with GalNAc- HULC mimics reduced excessive Phe in Pair −/− and Pah R408W/R408W mice and improved the Phe tolerance of these mice.
    Type of Medium: Online Resource
    ISSN: 0036-8075 , 1095-9203
    RVK:
    RVK:
    Language: English
    Publisher: American Association for the Advancement of Science (AAAS)
    Publication Date: 2021
    detail.hit.zdb_id: 128410-1
    detail.hit.zdb_id: 2066996-3
    detail.hit.zdb_id: 2060783-0
    SSG: 11
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    Proceedings of the National Academy of Sciences ; 2019
    In:  Proceedings of the National Academy of Sciences Vol. 116, No. 18 ( 2019-04-30), p. 9078-9083
    In: Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, Vol. 116, No. 18 ( 2019-04-30), p. 9078-9083
    Abstract: Major depressive disorder (MDD) is common and disabling, but its neuropathophysiology remains unclear. Most studies of functional brain networks in MDD have had limited statistical power and data analysis approaches have varied widely. The REST-meta-MDD Project of resting-state fMRI (R-fMRI) addresses these issues. Twenty-five research groups in China established the REST-meta-MDD Consortium by contributing R-fMRI data from 1,300 patients with MDD and 1,128 normal controls (NCs). Data were preprocessed locally with a standardized protocol before aggregated group analyses. We focused on functional connectivity (FC) within the default mode network (DMN), frequently reported to be increased in MDD. Instead, we found decreased DMN FC when we compared 848 patients with MDD to 794 NCs from 17 sites after data exclusion. We found FC reduction only in recurrent MDD, not in first-episode drug-naïve MDD. Decreased DMN FC was associated with medication usage but not with MDD duration. DMN FC was also positively related to symptom severity but only in recurrent MDD. Exploratory analyses also revealed alterations in FC of visual, sensory-motor, and dorsal attention networks in MDD. We confirmed the key role of DMN in MDD but found reduced rather than increased FC within the DMN. Future studies should test whether decreased DMN FC mediates response to treatment. All R-fMRI indices of data contributed by the REST-meta-MDD consortium are being shared publicly via the R-fMRI Maps Project.
    Type of Medium: Online Resource
    ISSN: 0027-8424 , 1091-6490
    RVK:
    RVK:
    Language: English
    Publisher: Proceedings of the National Academy of Sciences
    Publication Date: 2019
    detail.hit.zdb_id: 209104-5
    detail.hit.zdb_id: 1461794-8
    SSG: 11
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, Vol. 117, No. 5 ( 2020-02-04), p. 2560-2569
    Abstract: De novo mutations (DNMs), or mutations that appear in an individual despite not being seen in their parents, are an important source of genetic variation whose impact is relevant to studies of human evolution, genetics, and disease. Utilizing high-coverage whole-genome sequencing data as part of the Trans-Omics for Precision Medicine (TOPMed) Program, we called 93,325 single-nucleotide DNMs across 1,465 trios from an array of diverse human populations, and used them to directly estimate and analyze DNM counts, rates, and spectra. We find a significant positive correlation between local recombination rate and local DNM rate, and that DNM rate explains a substantial portion (8.98 to 34.92%, depending on the model) of the genome-wide variation in population-level genetic variation from 41K unrelated TOPMed samples. Genome-wide heterozygosity does correlate with DNM rate, but only explains 〈 1% of variation. While we are underpowered to see small differences, we do not find significant differences in DNM rate between individuals of European, African, and Latino ancestry, nor across ancestrally distinct segments within admixed individuals. However, we did find significantly fewer DNMs in Amish individuals, even when compared with other Europeans, and even after accounting for parental age and sequencing center. Specifically, we found significant reductions in the number of C→A and T→C mutations in the Amish, which seem to underpin their overall reduction in DNMs. Finally, we calculated near-zero estimates of narrow sense heritability ( h 2 ), which suggest that variation in DNM rate is significantly shaped by nonadditive genetic effects and the environment.
    Type of Medium: Online Resource
    ISSN: 0027-8424 , 1091-6490
    RVK:
    RVK:
    Language: English
    Publisher: Proceedings of the National Academy of Sciences
    Publication Date: 2020
    detail.hit.zdb_id: 209104-5
    detail.hit.zdb_id: 1461794-8
    SSG: 11
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: The Journal of Neuroscience, Society for Neuroscience, Vol. 30, No. 32 ( 2010-08-11), p. 10927-10938
    Abstract: B-type natriuretic peptide (BNP) has been known to be secreted from cardiac myocytes and activate its receptor, natriuretic peptide receptor-A (NPR-A), to reduce ventricular fibrosis. However, the function of BNP/NPR-A pathway in the somatic sensory system has been unknown. In the present study, we report a novel function of BNP in pain modulation. Using microarray and immunoblot analyses, we found that BNP and NPR-A were expressed in the dorsal root ganglion (DRG) of rats and upregulated after intraplantar injection of complete Freund's adjuvant (CFA). Immunohistochemistry showed that BNP was expressed in calcitonin gene-related peptide (CGRP)-containing small neurons and IB4 (isolectin B4)-positive neurons, whereas NPR-A was present in CGRP-containing neurons. Application of BNP reduced the firing frequency of small DRG neurons in the presence of glutamate through opening large-conductance Ca 2+ -activated K + channels (BK Ca channels). Furthermore, intrathecal injection of BNP yielded inhibitory effects on formalin-induced flinching behavior and CFA-induced thermal hyperalgesia in rats. Blockade of BNP signaling by BNP antibodies or cGMP-dependent protein kinase (PKG) inhibitor KT5823 [(9 S ,10 R ,12 R )-2,3,9,10,11,12-hexahydro-10-methoxy-2,9-dimethyl-1-oxo-9,12-epoxy-1 H -diindolo[1,2,3- fg :3′,2′,1′- kl ]pyrrolo[3,4- i ][1,6] benzodiazocine-10-carboxylic acid methyl ester] impaired the recovery from CFA-induced thermal hyperalgesia. Thus, BNP negatively regulates nociceptive transmission through presynaptic receptor NPR-A, and activation of the BNP/NPR-A/PKG/BK Ca channel pathway in nociceptive afferent neurons could be a potential strategy for inflammatory pain therapy.
    Type of Medium: Online Resource
    ISSN: 0270-6474 , 1529-2401
    Language: English
    Publisher: Society for Neuroscience
    Publication Date: 2010
    detail.hit.zdb_id: 1475274-8
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    In: Science, American Association for the Advancement of Science (AAAS), Vol. 366, No. 6464 ( 2019-10-25), p. 475-479
    Abstract: Ferroelectrics are usually inflexible oxides that undergo brittle deformation. We synthesized freestanding single-crystalline ferroelectric barium titanate (BaTiO 3 ) membranes with a damage-free lifting-off process. Our BaTiO 3 membranes can undergo a ~180° folding during an in situ bending test, demonstrating a super-elasticity and ultraflexibility. We found that the origin of the super-elasticity was from the dynamic evolution of ferroelectric nanodomains. High stresses modulate the energy landscape markedly and allow the dipoles to rotate continuously between the a and c nanodomains. A continuous transition zone is formed to accommodate the variant strain and avoid high mismatch stress that usually causes fracture. The phenomenon should be possible in other ferroelectrics systems through domain engineering. The ultraflexible epitaxial ferroelectric membranes could enable many applications such as flexible sensors, memories, and electronic skins.
    Type of Medium: Online Resource
    ISSN: 0036-8075 , 1095-9203
    RVK:
    RVK:
    Language: English
    Publisher: American Association for the Advancement of Science (AAAS)
    Publication Date: 2019
    detail.hit.zdb_id: 128410-1
    detail.hit.zdb_id: 2066996-3
    detail.hit.zdb_id: 2060783-0
    SSG: 11
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    In: Nature Neuroscience, Springer Science and Business Media LLC, Vol. 21, No. 6 ( 2018-6), p. 894-894
    Type of Medium: Online Resource
    ISSN: 1097-6256 , 1546-1726
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2018
    detail.hit.zdb_id: 1494955-6
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Online Resource
    Online Resource
    Springer Science and Business Media LLC ; 2018
    In:  Nature Neuroscience Vol. 21, No. 3 ( 2018-3), p. 447-454
    In: Nature Neuroscience, Springer Science and Business Media LLC, Vol. 21, No. 3 ( 2018-3), p. 447-454
    Type of Medium: Online Resource
    ISSN: 1097-6256 , 1546-1726
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2018
    detail.hit.zdb_id: 1494955-6
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    In: Science, American Association for the Advancement of Science (AAAS), Vol. 375, No. 6584 ( 2022-03-04)
    Abstract: Drosophila melanogaster has had a fruitful history in biological research because it has contributed to many key discoveries in genetics, development, and neurobiology. The fruit fly genome contains ~14,000 protein-coding genes, ~63% of which have human orthologs. Single-cell RNA-sequencing has recently been applied to multiple Drosophila tissues and developmental stages. However, these data have been generated by different laboratories on different genetic backgrounds with different dissociation protocols and sequencing platforms, which has hindered the systematic comparison of gene expression across cells and tissues. RATIONALE We aimed to establish a cell atlas for the entire adult Drosophila with the same genetic background, dissociation protocol, and sequencing platform to (i) obtain a comprehensive categorization of cell types, (ii) integrate single-cell transcriptome data with existing knowledge about gene expression and cell types, (iii) systematically compare gene expression across the entire organism and between males and females, and (iv) identify cell type–specific markers across the entire organism. We chose single-nucleus RNA-sequencing (snRNA-seq) to circumvent the difficulties of dissociating cells that are embedded in the cuticle (e.g., sensory neurons) or that are multinucleated (e.g., muscle cells). We took two complementary strategies: sequencing nuclei from dissected tissues to know the identity of the tissue source and sequencing nuclei from the entire head and body to ensure that all cells are sampled. Experts from 40 laboratories participated in crowd annotation to assign transcriptomic cell types with the best knowledge available. RESULTS We sequenced 570,000 cells using droplet-based 10x Genomics from 15 dissected tissues as well as whole heads and bodies, separately in females and males. We also sequenced 10,000 cells from dissected tissues using the plate-based Smart-seq2 platform, providing deeper coverage per cell. We developed reproducible analysis pipelines using NextFlow and implemented a distributed cell-type annotation system with controlled vocabularies in SCope. Crowd-based annotations of transcriptomes from dissected tissues identified 17 main cell categories and 251 detailed cell types linked to FlyBase ontologies. Many of these cell types are characterized for the first time, either because they emerged only after increasing cell coverage or because they reside in tissues that had not been previously subjected to scRNA-seq. The excellent correspondence of transcriptomic clusters from whole body and dissected tissues allowed us to transfer annotations and identify a few cuticular cell types not detected in individual tissues. Cross-tissue analysis revealed location-specific subdivisions of muscle cells and heterogeneity within blood cells. We then determined cell type–specific marker genes and transcription factors with different specificity levels, enabling the construction of gene regulatory networks. Finally, we explored sexual dimorphism, finding a link between sex-biased expression and the presence of doublesex , and investigated tissue dynamics through trajectory analyses. CONCLUSION Our Fly Cell Atlas (FCA) constitutes a valuable resource for the Drosophila community as a reference for studies of gene function at single-cell resolution. All the FCA data are freely available for further analysis through multiple portals and can be downloaded for custom analyses using other single-cell tools. The ability to annotate cell types by sequencing the entire head and body will facilitate the use of Drosophila in the study of biological processes and in modeling human diseases at a whole-organism level with cell-type resolution. All data with annotations can be accessed from www.flycellatlas.org , which provides links to SCope, ASAP, and cellxgene portals. Tabula Drosophilae . In this single-cell atlas of the adult fruit fly, 580,000 cells were sequenced and 〉 250 cell types were annotated. They are from 15 individually dissected sexed tissues as well as the entire head and body. All data are freely available for visualization and download, with featured analyses shown at the bottom right.
    Type of Medium: Online Resource
    ISSN: 0036-8075 , 1095-9203
    RVK:
    RVK:
    Language: English
    Publisher: American Association for the Advancement of Science (AAAS)
    Publication Date: 2022
    detail.hit.zdb_id: 128410-1
    detail.hit.zdb_id: 2066996-3
    detail.hit.zdb_id: 2060783-0
    SSG: 11
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    In: The Journal of Neuroscience, Society for Neuroscience, Vol. 43, No. 4 ( 2023-01-25), p. 526-539
    Abstract: The transmembrane protein TMEM206 was recently identified as the molecular basis of the extracellular proton-activated Cl − channel (PAC), which plays an essential role in neuronal death in ischemia-reperfusion. The PAC channel is activated by extracellular acid, but the proton-sensitive mechanism remains unclear, although different acid-sensitive pockets have been suggested based on the cryo-EM structure of the human PAC (hPAC) channel. In the present study, we firstly identified two acidic amino acid residues that removed the pH-dependent activation of the hPAC channel by neutralization all the conservative negative charged residues located in the extracellular domain of the hPAC channel and some positively charged residues at the hotspot combined with two-electrode voltage-clamp (TEVC) recording in the Xenopus oocytes system. Double-mutant cycle analysis and double cysteine mutant of these two residues proved that these two residues cooperatively form a proton-sensitive site. In addition, we found that chloral hydrate activates the hPAC channel depending on the normal pH sensitivity of the hPAC channel. Furthermore, the PAC channel knock-out (KO) male mice (C57BL/6J) resist chloral hydrate-induced sedation and hypnosis. Our study provides a molecular basis for understanding the proton-dependent activation mechanism of the hPAC channel and a novel drug target of chloral hydrate. SIGNIFICANCE STATEMENT Proton-activated Cl − channel (PAC) channels are widely distributed in the nervous system and play a vital pathophysiological role in ischemia and endosomal acidification. The main discovery of this paper is that we identified the proton activation mechanism of the human proton-activated chloride channel (hPAC). Intriguingly, we also found that anesthetic chloral hydrate can activate the hPAC channel in a pH-dependent manner. We found that the chloral hydrate activates the hPAC channel and needs the integrity of the pH-sensitive site. In addition, the PAC channel knock-out (KO) mice are resistant to chloral hydrate-induced anesthesia. The study on PAC channels' pH activation mechanism enables us to better understand PAC's biophysical mechanism and provides a novel target of chloral hydrate.
    Type of Medium: Online Resource
    ISSN: 0270-6474 , 1529-2401
    Language: English
    Publisher: Society for Neuroscience
    Publication Date: 2023
    detail.hit.zdb_id: 1475274-8
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Online Resource
    Online Resource
    American Association for the Advancement of Science (AAAS) ; 2021
    In:  Science Vol. 371, No. 6536 ( 2021-03-26), p. 1374-1378
    In: Science, American Association for the Advancement of Science (AAAS), Vol. 371, No. 6536 ( 2021-03-26), p. 1374-1378
    Abstract: The COVID-19 pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) continually poses serious threats to global public health. The main protease (M pro ) of SARS-CoV-2 plays a central role in viral replication. We designed and synthesized 32 new bicycloproline-containing M pro inhibitors derived from either boceprevir or telaprevir, both of which are approved antivirals. All compounds inhibited SARS-CoV-2 M pro activity in vitro, with 50% inhibitory concentration values ranging from 7.6 to 748.5 nM. The cocrystal structure of M pro in complex with MI-23, one of the most potent compounds, revealed its interaction mode. Two compounds (MI-09 and MI-30) showed excellent antiviral activity in cell-based assays. In a transgenic mouse model of SARS-CoV-2 infection, oral or intraperitoneal treatment with MI-09 or MI-30 significantly reduced lung viral loads and lung lesions. Both also displayed good pharmacokinetic properties and safety in rats.
    Type of Medium: Online Resource
    ISSN: 0036-8075 , 1095-9203
    RVK:
    RVK:
    Language: English
    Publisher: American Association for the Advancement of Science (AAAS)
    Publication Date: 2021
    detail.hit.zdb_id: 128410-1
    detail.hit.zdb_id: 2066996-3
    detail.hit.zdb_id: 2060783-0
    SSG: 11
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...