GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    Springer Science and Business Media LLC ; 2014
    In:  Behavior Genetics Vol. 44, No. 1 ( 2014-1), p. 68-76
    In: Behavior Genetics, Springer Science and Business Media LLC, Vol. 44, No. 1 ( 2014-1), p. 68-76
    Type of Medium: Online Resource
    ISSN: 0001-8244 , 1573-3297
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2014
    detail.hit.zdb_id: 2014974-8
    SSG: 12
    SSG: 5,2
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    Proceedings of the National Academy of Sciences ; 2016
    In:  Proceedings of the National Academy of Sciences Vol. 113, No. 1 ( 2016-01-05), p. 158-163
    In: Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, Vol. 113, No. 1 ( 2016-01-05), p. 158-163
    Abstract: Intravenously administered mesenchymal stem/stromal cells (MSCs) engraft only transiently in recipients, but confer long-term therapeutic benefits in patients with immune disorders. This suggests that MSCs induce immune tolerance by long-lasting effects on the recipient immune regulatory system. Here, we demonstrate that i.v. infusion of MSCs preconditioned lung monocytes/macrophages toward an immune regulatory phenotype in a TNF-α–stimulated gene/protein (TSG)-6–dependent manner. As a result, mice were protected against subsequent immune challenge in two models of allo- and autoimmune ocular inflammation: corneal allotransplantation and experimental autoimmune uveitis (EAU). The monocytes/macrophages primed by MSCs expressed high levels of MHC class II, B220, CD11b, and IL-10, and exhibited T-cell–suppressive activities independently of FoxP3 + regulatory T cells. Adoptive transfer of MSC-induced B220 + CD11b + monocytes/macrophages prevented corneal allograft rejection and EAU. Deletion of monocytes/macrophages abrogated the MSC-induced tolerance. However, MSCs with TSG-6 knockdown did not induce MHC II + B220 + CD11b + cells, and failed to attenuate EAU. Therefore, the results demonstrate a mechanism of the MSC-mediated immune modulation through induction of innate immune tolerance that involves monocytes/macrophages.
    Type of Medium: Online Resource
    ISSN: 0027-8424 , 1091-6490
    RVK:
    RVK:
    Language: English
    Publisher: Proceedings of the National Academy of Sciences
    Publication Date: 2016
    detail.hit.zdb_id: 209104-5
    detail.hit.zdb_id: 1461794-8
    SSG: 11
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, Vol. 111, No. 25 ( 2014-06-24)
    Abstract: Ler, a homolog of H-NS in enteropathogenic Escherichia coli (EPEC), plays a critical role in the expression of virulence genes encoded by the pathogenic island, locus of e nterocyte e ffacement (LEE). Although Ler acts as an antisilencer of multiple LEE operons by alleviating H-NS–mediated silencing, it represses its own expression from two LEE1 P1 promoters, P1A and P1B, that are separated by 10 bp. Various in vitro biochemical methods were used in this study to elucidate the mechanism underlying transcription repression by Ler. Ler acts through two AATT motifs, centered at position −111.5 on the coding strand and at +65.5 on the noncoding strand, by simultaneously repressing P1A and P1B through DNA-looping. DNA-looping was visualized using atomic force microscopy. It is intriguing that an antisilencing protein represses transcription, not by steric exclusion of RNA polymerase, but by DNA-looping. We propose that the DNA-looping prevents further processing of open promoter complex ( RP O ) at these promoters during transcription initiation.
    Type of Medium: Online Resource
    ISSN: 0027-8424 , 1091-6490
    RVK:
    RVK:
    Language: English
    Publisher: Proceedings of the National Academy of Sciences
    Publication Date: 2014
    detail.hit.zdb_id: 209104-5
    detail.hit.zdb_id: 1461794-8
    SSG: 11
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Online Resource
    Online Resource
    Proceedings of the National Academy of Sciences ; 2019
    In:  Proceedings of the National Academy of Sciences Vol. 116, No. 35 ( 2019-08-27), p. 17419-17428
    In: Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, Vol. 116, No. 35 ( 2019-08-27), p. 17419-17428
    Abstract: Viperin is an interferon (IFN)-inducible multifunctional protein. Recent evidence from high-throughput analyses indicates that most IFN-inducible proteins, including viperin, are intrinsically expressed in specific tissues; however, the respective intrinsic functions are unknown. Here we show that the intrinsic expression of viperin regulates adipose tissue thermogenesis, which is known to counter metabolic disease and contribute to the febrile response to pathogen invasion. Viperin knockout mice exhibit increased heat production, resulting in a reduction of fat mass, improvement of high-fat diet (HFD)-induced glucose tolerance, and enhancement of cold tolerance. These thermogenic phenotypes are attributed to an adipocyte-autonomous mechanism that regulates fatty acid β-oxidation. Under an HFD, viperin expression is increased, and its function is enhanced. Our findings reveal the intrinsic function of viperin as a novel mechanism regulating thermogenesis in adipose tissues, suggesting that viperin represents a molecular target for thermoregulation in clinical contexts.
    Type of Medium: Online Resource
    ISSN: 0027-8424 , 1091-6490
    RVK:
    RVK:
    Language: English
    Publisher: Proceedings of the National Academy of Sciences
    Publication Date: 2019
    detail.hit.zdb_id: 209104-5
    detail.hit.zdb_id: 1461794-8
    SSG: 11
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Online Resource
    Online Resource
    Proceedings of the National Academy of Sciences ; 2011
    In:  Proceedings of the National Academy of Sciences Vol. 108, No. 43 ( 2011-10-25), p. 17661-17666
    In: Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, Vol. 108, No. 43 ( 2011-10-25), p. 17661-17666
    Abstract: Heme-copper oxidases (HCuOs) are the last components of the respiratory chain in mitochondria and many bacteria. They catalyze O 2 reduction and couple it to the maintenance of a proton-motive force across the membrane in which they are embedded. In the mitochondrial-like, A family of HCuOs, there are two well established proton transfer pathways leading from the cytosol to the active site, the D and the K pathways. In the C family ( cbb 3 ) HCuOs, recent work indicated the use of only one pathway, analogous to the K pathway. In this work, we have studied the functional importance of the suggested entry point of this pathway, the Glu-25 ( Rhodobacter sphaeroides cbb 3 numbering) in the accessory subunit CcoP (E25 P ). We show that catalytic turnover is severely slowed in variants lacking the protonatable Glu-25. Furthermore, proton uptake from solution during oxidation of the fully reduced cbb 3 by O 2 is specifically and severely impaired when Glu-25 was exchanged for Ala or Gln, with rate constants 100–500 times slower than in wild type. Thus, our results support the role of E25 P as the entry point to the proton pathway in cbb 3 and that this pathway is the main proton pathway. This is in contrast to the A-type HCuOs, where the D (and not the K) pathway is used during O 2 reduction. The cbb 3 is in addition to O 2 reduction capable of NO reduction, an activity that was largely retained in the E25 P variants, consistent with a scenario where NO reduction in cbb 3 uses protons from the periplasmic side of the membrane.
    Type of Medium: Online Resource
    ISSN: 0027-8424 , 1091-6490
    RVK:
    RVK:
    Language: English
    Publisher: Proceedings of the National Academy of Sciences
    Publication Date: 2011
    detail.hit.zdb_id: 209104-5
    detail.hit.zdb_id: 1461794-8
    SSG: 11
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Online Resource
    Online Resource
    Elsevier BV ; 2022
    In:  Journal of Voice ( 2022-3)
    In: Journal of Voice, Elsevier BV, ( 2022-3)
    Type of Medium: Online Resource
    ISSN: 0892-1997
    Language: English
    Publisher: Elsevier BV
    Publication Date: 2022
    detail.hit.zdb_id: 2111437-7
    SSG: 7,11
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    In: Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, Vol. 119, No. 6 ( 2022-02-08)
    Abstract: The core plant microprocessor consists of DICER-LIKE 1 (DCL1), SERRATE (SE), and HYPONASTIC LEAVES 1 (HYL1) and plays a pivotal role in microRNA (miRNA) biogenesis. However, the proteolytic regulation of each component remains elusive. Here, we show that HYL1-CLEAVAGE SUBTILASE 1 (HCS1) is a cytoplasmic protease for HYL1-destabilization. HCS1-excessiveness reduces HYL1 that disrupts miRNA biogenesis, while HCS1-deficiency accumulates HYL1. Consistently, we identified the HYL1 K154A mutant that is insensitive to the proteolytic activity of HCS1, confirming the importance of HCS1 in HYL1 proteostasis. Moreover, HCS1-activity is regulated by light/dark transition. Under light, cytoplasmic CONSTITUTIVE PHOTOMORPHOGENIC 1 (COP1) E3 ligase suppresses HCS1-activity. COP1 sterically inhibits HCS1 by obstructing HYL1 access into the catalytic sites of HCS1. In contrast, darkness unshackles HCS1-activity for HYL1-destabilization due to nuclear COP1 relocation. Overall, the COP1-HYL1-HCS1 network may integrate two essential cellular pathways: the miRNA-biogenetic pathway and light signaling pathway.
    Type of Medium: Online Resource
    ISSN: 0027-8424 , 1091-6490
    RVK:
    RVK:
    Language: English
    Publisher: Proceedings of the National Academy of Sciences
    Publication Date: 2022
    detail.hit.zdb_id: 209104-5
    detail.hit.zdb_id: 1461794-8
    SSG: 11
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Online Resource
    Online Resource
    Proceedings of the National Academy of Sciences ; 2010
    In:  Proceedings of the National Academy of Sciences Vol. 107, No. 36 ( 2010-09-07), p. 15763-15767
    In: Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, Vol. 107, No. 36 ( 2010-09-07), p. 15763-15767
    Abstract: One key role of many cellular membranes is to hold a transmembrane electrochemical ion gradient that stores free energy, which is used, for example, to generate ATP or to drive transmembrane transport processes. In mitochondria and many bacteria, the gradient is maintained by proton-transport proteins that are part of the respiratory (electron-transport) chain. Even though our understanding of the structure and function of these proteins has increased significantly, very little is known about the specific role of functional protein-membrane and membrane-mediated protein-protein interactions. Here, we have investigated the effect of membrane incorporation on proton-transfer reactions within the membrane-bound proton pump cytochrome c oxidase. The results show that the membrane acts to accelerate proton transfer into the enzyme’s catalytic site and indicate that the intramolecular proton pathway is wired via specific amino acid residues to the two-dimensional space defined by the membrane surface. We conclude that the membrane not only acts as a passive barrier insulating the interior of the cell from the exterior solution, but also as a component of the energy-conversion machinery.
    Type of Medium: Online Resource
    ISSN: 0027-8424 , 1091-6490
    RVK:
    RVK:
    Language: English
    Publisher: Proceedings of the National Academy of Sciences
    Publication Date: 2010
    detail.hit.zdb_id: 209104-5
    detail.hit.zdb_id: 1461794-8
    SSG: 11
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    In: Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, Vol. 111, No. 42 ( 2014-10-21)
    Abstract: The respiratory chains of nearly all aerobic organisms are terminated by proton-pumping heme-copper oxygen reductases (HCOs). Previous studies have established that C-family HCOs contain a single channel for uptake from the bacterial cytoplasm of all chemical and pumped protons, and that the entrance of the K C -channel is a conserved glutamate in subunit III. However, the majority of the K C -channel is within subunit I, and the pathway from this conserved glutamate to subunit I is not evident. In the present study, molecular dynamics simulations were used to characterize a chain of water molecules leading from the cytoplasmic solution, passing the conserved glutamate in subunit III and extending into subunit I. Formation of the water chain, which controls the delivery of protons to the K C -channel, was found to depend on the conformation of Y241 Vc , located in subunit I at the interface with subunit III. Mutations of Y241 Vc (to A/F/H/S) in the Vibrio cholerae cbb 3 eliminate catalytic activity, but also cause perturbations that propagate over a 28-Å distance to the active site heme b 3 . The data suggest a linkage between residues lining the K C -channel and the active site of the enzyme, possibly mediated by transmembrane helix α7, which contains both Y241 Vc and the active site cross-linked Y255 Vc , as well as two Cu B histidine ligands. Other mutations of residues within or near helix α7 also perturb the active site, indicating that this helix is involved in modulation of the active site of the enzyme.
    Type of Medium: Online Resource
    ISSN: 0027-8424 , 1091-6490
    RVK:
    RVK:
    Language: English
    Publisher: Proceedings of the National Academy of Sciences
    Publication Date: 2014
    detail.hit.zdb_id: 209104-5
    detail.hit.zdb_id: 1461794-8
    SSG: 11
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Online Resource
    Online Resource
    Proceedings of the National Academy of Sciences ; 2023
    In:  Proceedings of the National Academy of Sciences Vol. 120, No. 12 ( 2023-03-21)
    In: Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, Vol. 120, No. 12 ( 2023-03-21)
    Abstract: Subthreshold depolarization enhances neurotransmitter release evoked by action potentials and plays a key role in modulating synaptic transmission by combining analog and digital signals. This process is known to be Ca 2+ dependent. However, the underlying mechanism of how small changes in basal Ca 2+ caused by subthreshold depolarization can regulate transmitter release triggered by a large increase in local Ca 2+ is not well understood. This study aimed to investigate the source and signaling mechanisms of Ca 2+ that couple subthreshold depolarization with the enhancement of glutamate release in hippocampal cultures and CA3 pyramidal neurons. Subthreshold depolarization increased presynaptic Ca 2+ levels, the frequency of spontaneous release, and the amplitude of evoked release, all of which were abolished by blocking L-type Ca 2+ channels. A high concentration of intracellular Ca 2+ buffer or blockade of calmodulin abolished depolarization-induced increases in transmitter release. Estimation of the readily releasable pool size using hypertonic sucrose showed depolarization-induced increases in readily releasable pool size, and this increase was abolished by the blockade of calmodulin. Our results provide mechanistic insights into the modulation of transmitter release by subthreshold potential change and highlight the role of L-type Ca 2+ channels in coupling subthreshold depolarization to the activation of Ca 2+ -dependent signaling molecules that regulate transmitter release.
    Type of Medium: Online Resource
    ISSN: 0027-8424 , 1091-6490
    RVK:
    RVK:
    Language: English
    Publisher: Proceedings of the National Academy of Sciences
    Publication Date: 2023
    detail.hit.zdb_id: 209104-5
    detail.hit.zdb_id: 1461794-8
    SSG: 11
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...