GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    American Association for the Advancement of Science (AAAS) ; 2005
    In:  Science Vol. 308, No. 5730 ( 2005-06-24), p. 1923-1927
    In: Science, American Association for the Advancement of Science (AAAS), Vol. 308, No. 5730 ( 2005-06-24), p. 1923-1927
    Abstract: Neurogenesis persists in the olfactory bulb (OB) of the adult mammalian brain. New interneurons are continually added to the OB from the subventricular zone (SVZ) via the rostral migratory stream (RMS). Here we show that secreted prokineticin 2 (PK2) functions as a chemoattractant for SVZ-derived neuronal progenitors. Within the OB, PK2 may also act as a detachment signal for chain-migrating progenitors arriving from the RMS. PK2 deficiency in mice leads to a marked reduction in OB size, loss of normal OB architecture, and the accumulation of neuronal progenitors in the RMS. These findings define an essential role for G protein–coupled PK2 signaling in postnatal and adult OB neurogenesis.
    Type of Medium: Online Resource
    ISSN: 0036-8075 , 1095-9203
    RVK:
    RVK:
    Language: English
    Publisher: American Association for the Advancement of Science (AAAS)
    Publication Date: 2005
    detail.hit.zdb_id: 128410-1
    detail.hit.zdb_id: 2066996-3
    detail.hit.zdb_id: 2060783-0
    SSG: 11
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    Proceedings of the National Academy of Sciences ; 2014
    In:  Proceedings of the National Academy of Sciences Vol. 111, No. 9 ( 2014-03-04), p. 3401-3406
    In: Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, Vol. 111, No. 9 ( 2014-03-04), p. 3401-3406
    Abstract: Aberrant activation of the small GTPase Ras by oncogenic mutation or constitutively active upstream receptor tyrosine kinases results in the deregulation of cellular signals governing growth and survival in ∼30% of all human cancers. However, the discovery of potent inhibitors of Ras has been difficult to achieve. Here, we report the identification of small molecules that bind to a unique pocket on the Ras:Son of Sevenless (SOS):Ras complex, increase the rate of SOS-catalyzed nucleotide exchange in vitro, and modulate Ras signaling pathways in cells. X-ray crystallography of Ras:SOS:Ras in complex with these molecules reveals that the compounds bind in a hydrophobic pocket in the CDC25 domain of SOS adjacent to the Switch II region of Ras. The structure–activity relationships exhibited by these compounds can be rationalized on the basis of multiple X-ray cocrystal structures. Mutational analyses confirmed the functional relevance of this binding site and showed it to be essential for compound activity. These molecules increase Ras-GTP levels and disrupt MAPK and PI3K signaling in cells at low micromolar concentrations. These small molecules represent tools to study the acute activation of Ras and highlight a pocket on SOS that may be exploited to modulate Ras signaling.
    Type of Medium: Online Resource
    ISSN: 0027-8424 , 1091-6490
    RVK:
    RVK:
    Language: English
    Publisher: Proceedings of the National Academy of Sciences
    Publication Date: 2014
    detail.hit.zdb_id: 209104-5
    detail.hit.zdb_id: 1461794-8
    SSG: 11
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    Proceedings of the National Academy of Sciences ; 2012
    In:  Proceedings of the National Academy of Sciences Vol. 109, No. 14 ( 2012-04-03), p. 5475-5480
    In: Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, Vol. 109, No. 14 ( 2012-04-03), p. 5475-5480
    Abstract: Stroke causes brain dysfunction and neuron death, and the lack of effective therapies heightens the need for new therapeutic targets. Here we identify prokineticin 2 (PK2) as a mediator for cerebral ischemic injury. PK2 is a bioactive peptide initially discovered as a regulator of gastrointestinal motility. Multiple biological roles for PK2 have been discovered, including circadian rhythms, angiogenesis, and neurogenesis. However, the role of PK2 in neuropathology is unknown. Using primary cortical cultures, we found that PK2 mRNA is up-regulated by several pathological stressors, including hypoxia, reactive oxygen species, and excitotoxic glutamate. Glutamate-induced PK2 expression is dependent on NMDA receptor activation and extracellular calcium. Enriched neuronal culture studies revealed that neurons are the principal source of glutamate-induced PK2. Using in vivo models of stroke, we found that PK2 mRNA is induced in the ischemic cortex and striatum. Central delivery of PK2 worsens infarct volume, whereas PK2 receptor antagonist decreases infarct volume and central inflammation while improving functional outcome. Direct central inhibition of PK2 using RNAi also reduces infarct volume. These findings indicate that PK2 can be activated by pathological stimuli such as hypoxia-ischemia and excitotoxic glutamate and identify PK2 as a deleterious mediator for cerebral ischemia.
    Type of Medium: Online Resource
    ISSN: 0027-8424 , 1091-6490
    RVK:
    RVK:
    Language: English
    Publisher: Proceedings of the National Academy of Sciences
    Publication Date: 2012
    detail.hit.zdb_id: 209104-5
    detail.hit.zdb_id: 1461794-8
    SSG: 11
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Online Resource
    Online Resource
    Society for Neuroscience ; 2006
    In:  The Journal of Neuroscience Vol. 26, No. 45 ( 2006-11-08), p. 11615-11623
    In: The Journal of Neuroscience, Society for Neuroscience, Vol. 26, No. 45 ( 2006-11-08), p. 11615-11623
    Abstract: Circadian clocks drive daily rhythms in virtually all organisms. In mammals, the suprachiasmatic nucleus (SCN) is recognized as the master clock that synchronizes central and peripheral oscillators to evoke circadian rhythms of diverse physiology and behavior. How the timing information is transmitted from the SCN clock to generate overt circadian rhythms is essentially unknown. Prokineticin 2 ( PK2 ), a clock-controlled gene that encodes a secreted protein, has been indicated as a candidate SCN clock output signal that regulates circadian locomotor rhythm. Here we report the generation and analysis of PK2 -null mice. The reduction of locomotor rhythms in PK2 -null mice was apparent in both hybrid and inbred genetic backgrounds. PK2 -null mice also displayed significantly reduced rhythmicity for a variety of other physiological and behavioral parameters, including sleep–wake cycle, body temperature, circulating glucocorticoid and glucose levels, as well as the expression of peripheral clock genes. In addition, PK2 -null mice showed accelerated acquisition of food anticipatory activity during a daytime food restriction. We conclude that PK2, acting as a SCN output factor, is important for the maintenance of robust circadian rhythms.
    Type of Medium: Online Resource
    ISSN: 0270-6474 , 1529-2401
    Language: English
    Publisher: Society for Neuroscience
    Publication Date: 2006
    detail.hit.zdb_id: 1475274-8
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Online Resource
    Online Resource
    Proceedings of the National Academy of Sciences ; 2014
    In:  Proceedings of the National Academy of Sciences Vol. 111, No. 35 ( 2014-09-02), p. 12913-12918
    In: Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, Vol. 111, No. 35 ( 2014-09-02), p. 12913-12918
    Abstract: Clinical and research efforts have focused on promoting functional recovery after stroke. Brain stimulation strategies are particularly promising because they allow direct manipulation of the target area’s excitability. However, elucidating the cell type and mechanisms mediating recovery has been difficult because existing stimulation techniques nonspecifically target all cell types near the stimulated site. To circumvent these barriers, we used optogenetics to selectively activate neurons that express channelrhodopsin 2 and demonstrated that selective neuronal stimulations in the ipsilesional primary motor cortex (iM1) can promote functional recovery. Stroke mice that received repeated neuronal stimulations exhibited significant improvement in cerebral blood flow and the neurovascular coupling response, as well as increased expression of activity-dependent neurotrophins in the contralesional cortex, including brain-derived neurotrophic factor, nerve growth factor, and neurotrophin 3. Western analysis also indicated that stimulated mice exhibited a significant increase in the expression of a plasticity marker growth-associated protein 43. Moreover, iM1 neuronal stimulations promoted functional recovery, as stimulated stroke mice showed faster weight gain and performed significantly better in sensory-motor behavior tests. Interestingly, stimulations in normal nonstroke mice did not alter motor behavior or neurotrophin expression, suggesting that the prorecovery effect of selective neuronal stimulations is dependent on the poststroke environment. These results demonstrate that stimulation of neurons in the stroke hemisphere is sufficient to promote recovery.
    Type of Medium: Online Resource
    ISSN: 0027-8424 , 1091-6490
    RVK:
    RVK:
    Language: English
    Publisher: Proceedings of the National Academy of Sciences
    Publication Date: 2014
    detail.hit.zdb_id: 209104-5
    detail.hit.zdb_id: 1461794-8
    SSG: 11
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Online Resource
    Online Resource
    Proceedings of the National Academy of Sciences ; 2010
    In:  Proceedings of the National Academy of Sciences Vol. 107, No. 33 ( 2010-08-17), p. 14823-14827
    In: Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, Vol. 107, No. 33 ( 2010-08-17), p. 14823-14827
    Abstract: Coping with intermittent social stress is an essential aspect of living in complex social environments. Coping tends to counteract the deleterious effects of stress and is thought to induce neuroadaptations in corticolimbic brain systems. Here we test this hypothesis in adult squirrel monkey males exposed to intermittent social separations and new pair formations. These manipulations simulate conditions that typically occur in male social associations because of competition for limited access to residency in mixed-sex groups. As evidence of coping, we previously confirmed that cortisol levels initially increase and then are restored to prestress levels within several days of each separation and new pair formation. Follow-up studies with exogenous cortisol further established that feedback regulation of the hypothalamic-pituitary-adrenal axis is not impaired. Now we report that exposure to intermittent social separations and new pair formations increased hippocampal neurogenesis in squirrel monkey males. Hippocampal neurogenesis in rodents contributes to spatial learning performance, and in monkeys we found that spatial learning was enhanced in conditions that increased hippocampal neurogenesis. Corresponding changes were discerned in the expression of genes involved in survival and integration of adult-born granule cells into hippocampal neural circuits. These findings support recent indications that stress coping stimulates hippocampal neurogenesis in adult rodents. Psychotherapies designed to promote stress coping potentially have similar effects in humans with major depression.
    Type of Medium: Online Resource
    ISSN: 0027-8424 , 1091-6490
    RVK:
    RVK:
    Language: English
    Publisher: Proceedings of the National Academy of Sciences
    Publication Date: 2010
    detail.hit.zdb_id: 209104-5
    detail.hit.zdb_id: 1461794-8
    SSG: 11
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    In: Brain, Oxford University Press (OUP), Vol. 146, No. 4 ( 2023-04-19), p. 1648-1661
    Abstract: Different neurological manifestations of coronavirus disease 2019 (COVID-19) in adults and children and their impact have not been well characterized. We aimed to determine the prevalence of neurological manifestations and in-hospital complications among hospitalized COVID-19 patients and ascertain differences between adults and children. We conducted a prospective multicentre observational study using the International Severe Acute Respiratory and emerging Infection Consortium (ISARIC) cohort across 1507 sites worldwide from 30 January 2020 to 25 May 2021. Analyses of neurological manifestations and neurological complications considered unadjusted prevalence estimates for predefined patient subgroups, and adjusted estimates as a function of patient age and time of hospitalization using generalized linear models. Overall, 161 239 patients (158 267 adults; 2972 children) hospitalized with COVID-19 and assessed for neurological manifestations and complications were included. In adults and children, the most frequent neurological manifestations at admission were fatigue (adults: 37.4%; children: 20.4%), altered consciousness (20.9%; 6.8%), myalgia (16.9%; 7.6%), dysgeusia (7.4%; 1.9%), anosmia (6.0%; 2.2%) and seizure (1.1%; 5.2%). In adults, the most frequent in-hospital neurological complications were stroke (1.5%), seizure (1%) and CNS infection (0.2%). Each occurred more frequently in intensive care unit (ICU) than in non-ICU patients. In children, seizure was the only neurological complication to occur more frequently in ICU versus non-ICU (7.1% versus 2.3%, P & lt; 0.001). Stroke prevalence increased with increasing age, while CNS infection and seizure steadily decreased with age. There was a dramatic decrease in stroke over time during the pandemic. Hypertension, chronic neurological disease and the use of extracorporeal membrane oxygenation were associated with increased risk of stroke. Altered consciousness was associated with CNS infection, seizure and stroke. All in-hospital neurological complications were associated with increased odds of death. The likelihood of death rose with increasing age, especially after 25 years of age. In conclusion, adults and children have different neurological manifestations and in-hospital complications associated with COVID-19. Stroke risk increased with increasing age, while CNS infection and seizure risk decreased with age.
    Type of Medium: Online Resource
    ISSN: 0006-8950 , 1460-2156
    RVK:
    Language: English
    Publisher: Oxford University Press (OUP)
    Publication Date: 2023
    detail.hit.zdb_id: 1474117-9
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    In: Brain, Oxford University Press (OUP), Vol. 144, No. 11 ( 2021-12-16), p. 3392-3404
    Abstract: In the wake of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic, an increasing number of patients with neurological disorders, including Guillain-Barré syndrome (GBS), have been reported following this infection. It remains unclear, however, if these cases are coincidental or not, as most publications were case reports or small regional retrospective cohort studies. The International GBS Outcome Study is an ongoing prospective observational cohort study enrolling patients with GBS within 2 weeks from onset of weakness. Data from patients included in this study, between 30 January 2020 and 30 May 2020, were used to investigate clinical and laboratory signs of a preceding or concurrent SARS-CoV-2 infection and to describe the associated clinical phenotype and disease course. Patients were classified according to the SARS-CoV-2 case definitions of the European Centre for Disease Prevention and Control and laboratory recommendations of the World Health Organization. Forty-nine patients with GBS were included, of whom eight (16%) had a confirmed and three (6%) a probable SARS-CoV-2 infection. Nine of these 11 patients had no serological evidence of other recent preceding infections associated with GBS, whereas two had serological evidence of a recent Campylobacter jejuni infection. Patients with a confirmed or probable SARS-CoV-2 infection frequently had a sensorimotor variant 8/11 (73%) and facial palsy 7/11 (64%). The eight patients who underwent electrophysiological examination all had a demyelinating subtype, which was more prevalent than the other patients included in the same time window [14/30 (47%), P = 0.012] as well as historical region and age-matched control subjects included in the International GBS Outcome Study before the pandemic [23/44 (52%), P = 0.016] . The median time from the onset of infection to neurological symptoms was 16 days (interquartile range 12–22). Patients with SARS-CoV-2 infection shared uniform neurological features, similar to those previously described in other post-viral GBS patients. The frequency (22%) of a preceding SARS-CoV-2 infection in our study population was higher than estimates of the contemporaneous background prevalence of SARS-CoV-2, which may be a result of recruitment bias during the pandemic, but could also indicate that GBS may rarely follow a recent SARS-CoV-2 infection. Consistent with previous studies, we found no increase in patient recruitment during the pandemic for our ongoing International GBS Outcome Study compared to previous years, making a strong relationship of GBS with SARS-CoV-2 unlikely. A case-control study is required to determine if there is a causative link or not.
    Type of Medium: Online Resource
    ISSN: 0006-8950 , 1460-2156
    RVK:
    Language: English
    Publisher: Oxford University Press (OUP)
    Publication Date: 2021
    detail.hit.zdb_id: 1474117-9
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    In: Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, Vol. 107, No. 18 ( 2010-05-04), p. 8404-8409
    Abstract: A recently identified variant within the fat mass and obesity-associated ( FTO ) gene is carried by 46% of Western Europeans and is associated with an ~1.2 kg higher weight, on average, in adults and an ~1 cm greater waist circumference. With 〉 1 billion overweight and 300 million obese persons worldwide, it is crucial to understand the implications of carrying this very common allele for the health of our aging population. FTO is highly expressed in the brain and elevated body mass index (BMI) is associated with brain atrophy, but it is unknown how the obesity-associated risk allele affects human brain structure. We therefore generated 3D maps of regional brain volume differences in 206 healthy elderly subjects scanned with MRI and genotyped as part of the Alzheimer's Disease Neuroimaging Initiative. We found a pattern of systematic brain volume deficits in carriers of the obesity-associated risk allele versus noncarriers. Relative to structure volumes in the mean template, FTO risk allele carriers versus noncarriers had an average brain volume difference of ~8% in the frontal lobes and 12% in the occipital lobes—these regions also showed significant volume deficits in subjects with higher BMI. These brain differences were not attributable to differences in cholesterol levels, hypertension, or the volume of white matter hyperintensities; which were not detectably higher in FTO risk allele carriers versus noncarriers. These brain maps reveal that a commonly carried susceptibility allele for obesity is associated with structural brain atrophy, with implications for the health of the elderly.
    Type of Medium: Online Resource
    ISSN: 0027-8424 , 1091-6490
    RVK:
    RVK:
    Language: English
    Publisher: Proceedings of the National Academy of Sciences
    Publication Date: 2010
    detail.hit.zdb_id: 209104-5
    detail.hit.zdb_id: 1461794-8
    SSG: 11
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    In: Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, Vol. 119, No. 21 ( 2022-05-24)
    Abstract: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection fatality rate (IFR) doubles with every 5 y of age from childhood onward. Circulating autoantibodies neutralizing IFN-α, IFN-ω, and/or IFN-β are found in ∼20% of deceased patients across age groups, and in ∼1% of individuals aged 〈 70 y and in 〉 4% of those 〉 70 y old in the general population. With a sample of 1,261 unvaccinated deceased patients and 34,159 individuals of the general population sampled before the pandemic, we estimated both IFR and relative risk of death (RRD) across age groups for individuals carrying autoantibodies neutralizing type I IFNs, relative to noncarriers. The RRD associated with any combination of autoantibodies was higher in subjects under 70 y old. For autoantibodies neutralizing IFN-α2 or IFN-ω, the RRDs were 17.0 (95% CI: 11.7 to 24.7) and 5.8 (4.5 to 7.4) for individuals 〈 70 y and ≥70 y old, respectively, whereas, for autoantibodies neutralizing both molecules, the RRDs were 188.3 (44.8 to 774.4) and 7.2 (5.0 to 10.3), respectively. In contrast, IFRs increased with age, ranging from 0.17% (0.12 to 0.31) for individuals 〈 40 y old to 26.7% (20.3 to 35.2) for those ≥80 y old for autoantibodies neutralizing IFN-α2 or IFN-ω, and from 0.84% (0.31 to 8.28) to 40.5% (27.82 to 61.20) for autoantibodies neutralizing both. Autoantibodies against type I IFNs increase IFRs, and are associated with high RRDs, especially when neutralizing both IFN-α2 and IFN-ω. Remarkably, IFRs increase with age, whereas RRDs decrease with age. Autoimmunity to type I IFNs is a strong and common predictor of COVID-19 death.
    Type of Medium: Online Resource
    ISSN: 0027-8424 , 1091-6490
    RVK:
    RVK:
    Language: English
    Publisher: Proceedings of the National Academy of Sciences
    Publication Date: 2022
    detail.hit.zdb_id: 209104-5
    detail.hit.zdb_id: 1461794-8
    SSG: 11
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...