GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    American Association for the Advancement of Science (AAAS) ; 2010
    In:  Science Vol. 328, No. 5979 ( 2010-05-07), p. 689-690
    In: Science, American Association for the Advancement of Science (AAAS), Vol. 328, No. 5979 ( 2010-05-07), p. 689-690
    Type of Medium: Online Resource
    ISSN: 0036-8075 , 1095-9203
    RVK:
    RVK:
    Language: English
    Publisher: American Association for the Advancement of Science (AAAS)
    Publication Date: 2010
    detail.hit.zdb_id: 128410-1
    detail.hit.zdb_id: 2066996-3
    detail.hit.zdb_id: 2060783-0
    SSG: 11
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    American Association for the Advancement of Science (AAAS) ; 2011
    In:  Science Vol. 332, No. 6030 ( 2011-05-06), p. 670-671
    In: Science, American Association for the Advancement of Science (AAAS), Vol. 332, No. 6030 ( 2011-05-06), p. 670-671
    Abstract: Agriculture in the United States and many other countries is at a critical juncture. Public investments and policy reforms will inform landscape management practices to be used by farmers and ranchers for sustaining food and ecosystem security. Although U.S. farms have provided growing supplies of food and other products, they have also been major contributors to global greenhouse gases, biodiversity loss, natural resource degradation, and public health problems ( 1 ). Farm productivity and economic viability are vulnerable to resource scarcities, climate change, and market volatility ( 2 ). Concerns about long-term sustainability have promoted interest in new forms of agriculture that (i) enhance the naturalresource base and environment, (ii) make farming financially viable, and (iii) contribute to the well-being of farmers, farm workers, and rural communities, while still (iv) providing abundant, affordable food, feed, fiber, and fuel.
    Type of Medium: Online Resource
    ISSN: 0036-8075 , 1095-9203
    RVK:
    RVK:
    Language: English
    Publisher: American Association for the Advancement of Science (AAAS)
    Publication Date: 2011
    detail.hit.zdb_id: 128410-1
    detail.hit.zdb_id: 2066996-3
    detail.hit.zdb_id: 2060783-0
    SSG: 11
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    Society for Neuroscience ; 2018
    In:  The Journal of Neuroscience Vol. 38, No. 3 ( 2018-01-17), p. 733-744
    In: The Journal of Neuroscience, Society for Neuroscience, Vol. 38, No. 3 ( 2018-01-17), p. 733-744
    Abstract: The spontaneous tonic discharge activity of nigral dopamine neurons plays a fundamental role in dopaminergic signaling. To investigate the role of neuronal morphology and architecture with respect to spontaneous activity in this population, we visualized the 3D structure of the axon initial segment (AIS) along with the entire somatodendritic domain of adult male mouse dopaminergic neurons, previously recorded in vivo . We observed a positive correlation of the firing rate with both proximity and size of the AIS. Computational modeling showed that the size of the AIS, but not its position within the somatodendritic domain, is the major causal determinant of the tonic firing rate in the intact model, by virtue of the higher intrinsic frequency of the isolated AIS. Further mechanistic analysis of the relationship between neuronal morphology and firing rate showed that dopaminergic neurons function as a coupled oscillator whose frequency of discharge results from a compromise between AIS and somatodendritic oscillators. Thus, morphology plays a critical role in setting the basal tonic firing rate, which in turn could control striatal dopaminergic signaling that mediates motivation and movement. SIGNIFICANCE STATEMENT The frequency at which nigral dopamine neurons discharge action potentials sets baseline dopamine levels in the brain, which enables activity in motor, cognitive, and motivational systems. Here, we demonstrate that the size of the axon initial segment, a subcellular compartment responsible for initiating action potentials, is a key determinant of the firing rate in these neurons. The axon initial segment and all the molecular components that underlie its critical function may provide a novel target for the regulation of dopamine levels in the brain.
    Type of Medium: Online Resource
    ISSN: 0270-6474 , 1529-2401
    Language: English
    Publisher: Society for Neuroscience
    Publication Date: 2018
    detail.hit.zdb_id: 1475274-8
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: The Journal of Neuroscience, Society for Neuroscience, Vol. 38, No. 38 ( 2018-09-19), p. 8295-8310
    Abstract: Action potentials (APs) in nigral dopaminergic neurons often exhibit two separate components: the first reflecting spike initiation in the dendritically located axon initial segment (AIS) and the second the subsequent dendro-somatic spike. These components are separated by a notch in the ascending phase of the somatic extracellular waveform and in the temporal derivative of the somatic intracellular waveform. Still, considerable variability exists in the presence and magnitude of the notch across neurons. To systematically address the contribution of AIS, dendritic and somatic compartments to shaping the two-component APs, we modeled APs of previously in vivo electrophysiologically characterized and 3D-reconstructed male mouse and rat dopaminergic neurons. A parsimonious two-domain model, with high (AIS) and lower (dendro-somatic) Na + conductance, reproduced the notch in the temporal derivatives, but not in the extracellular APs, regardless of morphology. The notch was only revealed when somatic active currents were reduced, constraining the model to three domains. Thus, an initial AIS spike is followed by an actively generated spike by the axon-bearing dendrite (ABD), in turn followed mostly passively by the soma. The transition from being a source compartment for the AIS spike to a source compartment for the ABD spike satisfactorily explains the extracellular somatic notch. Larger AISs and thinner ABD (but not soma-to-AIS distance) accentuate the AIS component. We conclude that variability in AIS size and ABD caliber explains variability in AP extracellular waveform and separation of AIS and dendro-somatic components, given the presence of at least three functional domains with distinct excitability characteristics. SIGNIFICANCE STATEMENT Midbrain dopamine neurons make an important contribution to circuits mediating motivation and movement. Understanding the basic rules that govern the electrical activity of single dopaminergic neurons is therefore essential to reveal how they ultimately contribute to movement and motivation as well as what goes wrong in associated disorders. Our computational study focuses on the generation and propagation of action potentials and shows that different morphologies and excitability characteristics of the cell body, dendrites and proximal axon can explain the diversity of action potentials shapes in this population. These compartments likely make differential contributions both to normal dopaminergic signaling and could potentially underlie pathological dopaminergic signaling implicated in addiction, schizophrenia, Parkinson's disease, and other disorders.
    Type of Medium: Online Resource
    ISSN: 0270-6474 , 1529-2401
    Language: English
    Publisher: Society for Neuroscience
    Publication Date: 2018
    detail.hit.zdb_id: 1475274-8
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Online Resource
    Online Resource
    Proceedings of the National Academy of Sciences ; 2002
    In:  Proceedings of the National Academy of Sciences Vol. 99, No. 8 ( 2002-04-16), p. 5189-5194
    In: Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, Vol. 99, No. 8 ( 2002-04-16), p. 5189-5194
    Abstract: Halogenated organic compounds (XOCs) are among the most widely used synthetic chemicals. Many XOCs are recalcitrant to natural degradation and have become prominent environmental contaminants. One group of such XOCs are the heavily used chloroacetanilide herbicides. We have found that chloroacetanilide herbicides are rapidly dechlorinated in water, sand, and soil by thiosulfate salts under ambient conditions. Structural and kinetics analysis suggests that the reaction occurred by S N 2 nucleophilic substitution, in which the chlorine was replaced by thiosulfate and the herbicide was detoxified. Laboratory studies showed that this reaction could be used for removing residues of chloroacetanilide herbicides in water, soil, and sand. Our findings also suggest that some other XOCs may be subject to this reaction. Because common thiosulfate salts are innocuous products (e.g., fertilizers) and the reaction selectively detoxifies XOCs at low thiosulfate levels, this discovery may lead to a new way for safe removal of certain XOCs from the environment.
    Type of Medium: Online Resource
    ISSN: 0027-8424 , 1091-6490
    RVK:
    RVK:
    Language: English
    Publisher: Proceedings of the National Academy of Sciences
    Publication Date: 2002
    detail.hit.zdb_id: 209104-5
    detail.hit.zdb_id: 1461794-8
    SSG: 11
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    In: Brain, Oxford University Press (OUP), Vol. 140, No. 12 ( 2017-12-01), p. 3252-3268
    Type of Medium: Online Resource
    ISSN: 0006-8950 , 1460-2156
    RVK:
    Language: English
    Publisher: Oxford University Press (OUP)
    Publication Date: 2017
    detail.hit.zdb_id: 1474117-9
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Online Resource
    Online Resource
    Society for Neuroscience ; 2021
    In:  The Journal of Neuroscience Vol. 41, No. 50 ( 2021-12-15), p. 10261-10277
    In: The Journal of Neuroscience, Society for Neuroscience, Vol. 41, No. 50 ( 2021-12-15), p. 10261-10277
    Abstract: Sound discrimination is essential in many species for communicating and foraging. Bats, for example, use sounds for echolocation and communication. In the bat auditory cortex there are neurons that process both sound categories, but how these neurons respond to acoustic transitions, that is, echolocation streams followed by a communication sound, remains unknown. Here, we show that the acoustic context, a leading sound sequence followed by a target sound, changes neuronal discriminability of echolocation versus communication calls in the cortex of awake bats of both sexes. Nonselective neurons that fire equally well to both echolocation and communication calls in the absence of context become category selective when leading context is present. On the contrary, neurons that prefer communication sounds in the absence of context turn into nonselective ones when context is added. The presence of context leads to an overall response suppression, but the strength of this suppression is stimulus specific. Suppression is strongest when context and target sounds belong to the same category, e.g.,echolocation followed by echolocation. A neuron model of stimulus-specific adaptation replicated our results in silico . The model predicts selectivity to communication and echolocation sounds in the inputs arriving to the auditory cortex, as well as two forms of adaptation, presynaptic frequency-specific adaptation acting in cortical inputs and stimulus-unspecific postsynaptic adaptation. In addition, the model predicted that context effects can last up to 1.5 s after context offset and that synaptic inputs tuned to low-frequency sounds (communication signals) have the shortest decay constant of presynaptic adaptation. SIGNIFICANCE STATEMENT We studied cortical responses to isolated calls and call mixtures in awake bats and show that (1) two neuronal populations coexist in the bat cortex, including neurons that discriminate social from echolocation sounds well and neurons that are equally driven by these two ethologically different sound types; (2) acoustic context (i.e., other natural sounds preceding the target sound) affects natural sound selectivity in a manner that could not be predicted based on responses to isolated sounds; and (3) a computational model similar to those used for explaining stimulus-specific adaptation in rodents can account for the responses observed in the bat cortex to natural sounds. This model depends on segregated feedforward inputs, synaptic depression, and postsynaptic neuronal adaptation.
    Type of Medium: Online Resource
    ISSN: 0270-6474 , 1529-2401
    Language: English
    Publisher: Society for Neuroscience
    Publication Date: 2021
    detail.hit.zdb_id: 1475274-8
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Online Resource
    Online Resource
    Proceedings of the National Academy of Sciences ; 2008
    In:  Proceedings of the National Academy of Sciences Vol. 105, No. 49 ( 2008-12-09), p. 19396-19401
    In: Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, Vol. 105, No. 49 ( 2008-12-09), p. 19396-19401
    Abstract: The ultimate goal for the treatment of autoimmunity is to restore immunological tolerance. Regulatory T cells (Treg) play a central role in immune tolerance, and Treg functional abnormalities have been identified in different autoimmune diseases, including rheumatoid arthritis (RA). We have previously shown that natural Treg from RA patients are competent at suppressing responder T cell proliferation but not cytokine production. Here, we explore the hypothesis that this Treg defect in RA is linked with abnormalities in the expression and function of CTLA-4. We demonstrate that CTLA-4 expression on Treg from RA patients was significantly reduced compared with healthy Treg and is associated with an increased rate of CTLA-4 internalization. Regulation of T cell receptor signaling by CTLA-4 was impaired in RA Treg and associated with delayed recruitment of CTLA-4 to the immunological synapse. Artificial induction of CTLA-4 expression on RA Treg restored their suppressive capacity. Furthermore, CTLA-4 blockade impaired healthy Treg suppression of T cell IFN-γ production, but not proliferation, thereby recapitulating the unique Treg defect in RA. Our results suggest that defects in CTLA-4 could contribute to abnormal Treg function in RA and may represent a target for therapy for inducing long-lasting remission.
    Type of Medium: Online Resource
    ISSN: 0027-8424 , 1091-6490
    RVK:
    RVK:
    Language: English
    Publisher: Proceedings of the National Academy of Sciences
    Publication Date: 2008
    detail.hit.zdb_id: 209104-5
    detail.hit.zdb_id: 1461794-8
    SSG: 11
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    In: Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, Vol. 118, No. 21 ( 2021-05-25)
    Abstract: The liver X receptor (LXR) is a key transcriptional regulator of cholesterol, fatty acid, and phospholipid metabolism. Dynamic remodeling of immunometabolic pathways, including lipid metabolism, is a crucial step in T cell activation. Here, we explored the role of LXR-regulated metabolic processes in primary human CD4 + T cells and their role in controlling plasma membrane lipids (glycosphingolipids and cholesterol), which strongly influence T cell immune signaling and function. Crucially, we identified the glycosphingolipid biosynthesis enzyme glucosylceramide synthase as a direct transcriptional LXR target. LXR activation by agonist GW3965 or endogenous oxysterol ligands significantly altered the glycosphingolipid:cholesterol balance in the plasma membrane by increasing glycosphingolipid levels and reducing cholesterol. Consequently, LXR activation lowered plasma membrane lipid order (stability), and an LXR antagonist could block this effect. LXR stimulation also reduced lipid order at the immune synapse and accelerated activation of proximal T cell signaling molecules. Ultimately, LXR activation dampened proinflammatory T cell function. Finally, compared with responder T cells, regulatory T cells had a distinct pattern of LXR target gene expression corresponding to reduced lipid order. This suggests LXR-driven lipid metabolism could contribute to functional specialization of these T cell subsets. Overall, we report a mode of action for LXR in T cells involving the regulation of glycosphingolipid and cholesterol metabolism and demonstrate its relevance in modulating T cell function.
    Type of Medium: Online Resource
    ISSN: 0027-8424 , 1091-6490
    RVK:
    RVK:
    Language: English
    Publisher: Proceedings of the National Academy of Sciences
    Publication Date: 2021
    detail.hit.zdb_id: 209104-5
    detail.hit.zdb_id: 1461794-8
    SSG: 11
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...