GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, Vol. 107, No. 1 ( 2010-01-05), p. 384-388
    Abstract: Loss-of-function mutations in the genes associated with primary microcephaly (MCPH) reduce human brain size by about two-thirds, without producing gross abnormalities in brain organization or physiology and leaving other organs largely unaffected [Woods CG, et al. (2005) Am J Hum Genet 76:717–728]. There is also evidence suggesting that MCPH genes have evolved rapidly in primates and humans and have been subjected to selection in recent human evolution [Vallender EJ, et al. (2008) Trends Neurosci 31:637–644]. Here, we show that common variants of MCPH genes account for some of the common variation in brain structure in humans, independently of disease status. We investigated the correlations of SNPs from four MCPH genes with brain morphometry phenotypes obtained with MRI. We found significant, sex-specific associations between common, nonexonic, SNPs of the genes CDK5RAP2 , MCPH1 , and ASPM , with brain volume or cortical surface area in an ethnically homogenous Norwegian discovery sample ( n = 287), including patients with mental illness. The most strongly associated SNP findings were replicated in an independent North American sample ( n = 656), which included patients with dementia. These results are consistent with the view that common variation in brain structure is associated with genetic variants located in nonexonic, presumably regulatory, regions.
    Type of Medium: Online Resource
    ISSN: 0027-8424 , 1091-6490
    RVK:
    RVK:
    Language: English
    Publisher: Proceedings of the National Academy of Sciences
    Publication Date: 2010
    detail.hit.zdb_id: 209104-5
    detail.hit.zdb_id: 1461794-8
    SSG: 11
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    Proceedings of the National Academy of Sciences ; 2016
    In:  Proceedings of the National Academy of Sciences Vol. 113, No. 21 ( 2016-05-24), p. 5964-5969
    In: Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, Vol. 113, No. 21 ( 2016-05-24), p. 5964-5969
    Abstract: Vibrio is a ubiquitous genus of marine bacteria, typically comprising a small fraction of the total microbial community in surface waters, but capable of becoming a dominant taxon in response to poorly characterized factors. Iron (Fe), often restricted by limited bioavailability and low external supply, is an essential micronutrient that can limit Vibrio growth. Vibrio species have robust metabolic capabilities and an array of Fe-acquisition mechanisms, and are able to respond rapidly to nutrient influx, yet Vibrio response to environmental pulses of Fe remains uncharacterized. Here we examined the population growth of Vibrio after natural and simulated pulses of atmospherically transported Saharan dust, an important and episodic source of Fe to tropical marine waters. As a model for opportunistic bacterial heterotrophs, we demonstrated that Vibrio proliferate in response to a broad range of dust-Fe additions at rapid timescales. Within 24 h of exposure, strains of Vibrio cholerae and Vibrio alginolyticus were able to directly use Saharan dust–Fe to support rapid growth. These findings were also confirmed with in situ field studies; arrival of Saharan dust in the Caribbean and subtropical Atlantic coincided with high levels of dissolved Fe, followed by up to a 30-fold increase of culturable Vibrio over background levels within 24 h. The relative abundance of Vibrio increased from ∼1 to ∼20% of the total microbial community. This study, to our knowledge, is the first to describe Vibrio response to Saharan dust nutrients, having implications at the intersection of marine ecology, Fe biogeochemistry, and both human and environmental health.
    Type of Medium: Online Resource
    ISSN: 0027-8424 , 1091-6490
    RVK:
    RVK:
    Language: English
    Publisher: Proceedings of the National Academy of Sciences
    Publication Date: 2016
    detail.hit.zdb_id: 209104-5
    detail.hit.zdb_id: 1461794-8
    SSG: 11
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...