GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Science, American Association for the Advancement of Science (AAAS), Vol. 363, No. 6434 ( 2019-03-29)
    Abstract: Bacteriophage are abundant at sites of bacterial infection, but their effects on mammalian hosts are unclear. We have identified pathogenic roles for filamentous Pf bacteriophage produced by Pseudomonas aeruginosa ( Pa ) in suppression of immunity against bacterial infection. Pf promote Pa wound infection in mice and are associated with chronic human Pa wound infections. Murine and human leukocytes endocytose Pf, and internalization of this single-stranded DNA virus results in phage RNA production. This triggers Toll-like receptor 3 (TLR3)– and TIR domain–containing adapter-inducing interferon-β (TRIF)–dependent type I interferon production, inhibition of tumor necrosis factor (TNF), and the suppression of phagocytosis. Conversely, immunization of mice against Pf prevents Pa wound infection. Thus, Pf triggers maladaptive innate viral pattern-recognition responses, which impair bacterial clearance. Vaccination against phage virions represents a potential strategy to prevent bacterial infection.
    Type of Medium: Online Resource
    ISSN: 0036-8075 , 1095-9203
    RVK:
    RVK:
    Language: English
    Publisher: American Association for the Advancement of Science (AAAS)
    Publication Date: 2019
    detail.hit.zdb_id: 128410-1
    detail.hit.zdb_id: 2066996-3
    detail.hit.zdb_id: 2060783-0
    SSG: 11
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Science, American Association for the Advancement of Science (AAAS), Vol. 299, No. 5615 ( 2003-03-28), p. 2076-2079
    Abstract: Members of the Toll-like receptor (TLR) and interleukin-1 receptor (IL-1R) superfamily share an intracytoplasmic Toll–IL-1 receptor (TIR) domain, which mediates recruitment of the interleukin-1 receptor–associated kinase (IRAK) complex via TIR-containing adapter molecules. We describe three unrelated children with inherited IRAK-4 deficiency. Their blood and fibroblast cells did not activate nuclear factor κB and mitogen-activated protein kinase (MAPK) and failed to induce downstream cytokines in response to any of the known ligands of TIR-bearing receptors. The otherwise healthy children developed infections caused by pyogenic bacteria. These findings suggest that, in humans, the TIR-IRAK signaling pathway is crucial for protective immunity against specific bacteria but is redundant against most other microorganisms.
    Type of Medium: Online Resource
    ISSN: 0036-8075 , 1095-9203
    RVK:
    RVK:
    Language: English
    Publisher: American Association for the Advancement of Science (AAAS)
    Publication Date: 2003
    detail.hit.zdb_id: 128410-1
    detail.hit.zdb_id: 2066996-3
    detail.hit.zdb_id: 2060783-0
    SSG: 11
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    Proceedings of the National Academy of Sciences ; 2005
    In:  Proceedings of the National Academy of Sciences Vol. 102, No. 7 ( 2005-02-15), p. 2487-2489
    In: Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, Vol. 102, No. 7 ( 2005-02-15), p. 2487-2489
    Abstract: The immunogenetic factors that influence susceptibility to pneumonia are poorly understood. Recent studies suggest an association of toll-like receptor 4 (TLR4) polymorphisms with increased susceptibility to some infections. Here, we examined whether polymorphisms in TLR4 influence susceptibility to Legionnaires' disease (LD) by using a case-control study to compare the allele frequencies of two SNPs (A896G and C1196T). Cases ( n = 108) were obtained from a LD outbreak in The Netherlands in 1999. Controls were exposed at the same outbreak, did not develop pneumonia, and were either unmatched ( n = 421) or matched ( n = 89) to patients for age, sex, and geographic residence. Allele 896G was associated with LD susceptibility with a frequency of 6.5% in the combined control group (matched and unmatched) vs. 2.5% in patients [odds ratio (OR) of 0.36, 95% confidence interval (C.I.) 0.14–0.91, P = 0.025] . In the matched control group comparison, allele 896G also showed a protective association with an OR of 0.27 (95% C.I. 0.09–0.75, P = 0.008). An analysis of genotype frequencies (896 AA vs. AG and GG) demonstrated similar protective associations (patient vs. combined control group comparison, OR = 0.35, 95% C.I. 0.14–0.89, P = 0.02; matched control group comparison, OR = 0.25, 95% C.I. 0.09–0.71, P = 0.006). Allele 1196T cosegregated with allele 896G and, thus, had identical associations. Although previous studies suggest that these TLR4 SNPs are associated with an increased risk of infection, this study demonstrates an association with resistance. This protective association illustrates that an innate immune receptor can mediate either beneficial or deleterious inflammatory responses and that these outcomes vary with different pathogens.
    Type of Medium: Online Resource
    ISSN: 0027-8424 , 1091-6490
    RVK:
    RVK:
    Language: English
    Publisher: Proceedings of the National Academy of Sciences
    Publication Date: 2005
    detail.hit.zdb_id: 209104-5
    detail.hit.zdb_id: 1461794-8
    SSG: 11
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Online Resource
    Online Resource
    Proceedings of the National Academy of Sciences ; 2005
    In:  Proceedings of the National Academy of Sciences Vol. 102, No. 30 ( 2005-07-26), p. 10593-10597
    In: Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, Vol. 102, No. 30 ( 2005-07-26), p. 10593-10597
    Abstract: Systemic lupus erythematosus (SLE) is an autoimmune disease with a complex genetic basis that includes susceptibility gene(s) within the chromosome 1q41–1q42 region. Toll-like receptor 5 (TLR5), the innate immune receptor for bacterial flagellin, maps to chromosome 1q41 and contains a common stop codon polymorphism that abrogates signaling (allele C1174T) and is associated with an increased risk of infection. By using transmission disequilibrium testing in a cohort containing 199 affected patients and their 75 unaffected siblings and 326 parents, we found that allele 1174C, but not 1174T (with the stop codon), was preferentially transmitted to SLE-affected offspring (a 19:6 transmitted/not transmitted ratio, P = 0.009). In contrast, the alleles of the other three TLR5 SNPs did not exhibit preferential transmission. In addition, we found that allele 1174C was not preferentially transmitted to unaffected offspring (3:6 transmitted/not transmitted ratio, P value not significant). The allele frequency of 1174T in the probands was 3.2% compared with 5.8% in unaffected individuals, which was consistent with a protective association (odds ratio, 0.51; 95% confidence interval, 0.26–0.98; P = 0.041). Subjects with the TLR5 stop codon produced significantly lower levels of proinflammatory cytokines in comparison with individuals with the wild-type genotype. Together, these results indicate that the TLR5 stop codon polymorphism is associated with protection from the development of SLE. These data support a role for flagellated bacteria and the innate immune response in the development of SLE with implications for novel immunomodulatory treatment strategies.
    Type of Medium: Online Resource
    ISSN: 0027-8424 , 1091-6490
    RVK:
    RVK:
    Language: English
    Publisher: Proceedings of the National Academy of Sciences
    Publication Date: 2005
    detail.hit.zdb_id: 209104-5
    detail.hit.zdb_id: 1461794-8
    SSG: 11
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...