GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, Vol. 120, No. 18 ( 2023-05-02)
    Abstract: The unique cancer-associated immunosuppression in brain, combined with a paucity of infiltrating T cells, contributes to the low response rate and poor treatment outcomes of T cell-based immunotherapy for patients diagnosed with glioblastoma multiforme (GBM). Here, we report on a self-assembling paclitaxel (PTX) filament (PF) hydrogel that stimulates macrophage-mediated immune response for local treatment of recurrent glioblastoma. Our results suggest that aqueous PF solutions containing aCD47 can be directly deposited into the tumor resection cavity, enabling seamless hydrogel filling of the cavity and long-term release of both therapeutics. The PTX PFs elicit an immune-stimulating tumor microenvironment (TME) and thus sensitizes tumor to the aCD47-mediated blockade of the antiphagocytic “don’t eat me” signal, which subsequently promotes tumor cell phagocytosis by macrophages and also triggers an antitumor T cell response. As adjuvant therapy after surgery, this aCD47/PF supramolecular hydrogel effectively suppresses primary brain tumor recurrence and prolongs overall survivals with minimal off-target side effects.
    Type of Medium: Online Resource
    ISSN: 0027-8424 , 1091-6490
    RVK:
    RVK:
    Language: English
    Publisher: Proceedings of the National Academy of Sciences
    Publication Date: 2023
    detail.hit.zdb_id: 209104-5
    detail.hit.zdb_id: 1461794-8
    SSG: 11
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    Proceedings of the National Academy of Sciences ; 2007
    In:  Proceedings of the National Academy of Sciences Vol. 104, No. 49 ( 2007-12-04), p. 19226-19231
    In: Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, Vol. 104, No. 49 ( 2007-12-04), p. 19226-19231
    Abstract: Histone methylation is a dynamic process that participates in a diverse array of cellular processes and has been found to associate with cancer. Recently, several histone demethylases have been identified that catalyze the removal of methylation from histone H3 lysine residues. Through bioinformatic and biochemical analysis, we identified JARID1B as a H3K4 demethylase. Overexpression of JARID1B resulted in loss of tri-, di-, and monomethyl H3K4 but did not affect other histone lysine methylations. In vitro biochemical experiments demonstrated that JARID1B directly catalyzes the demethylation. The enzymatic activity requires the JmjC domain and uses Fe(II) and α-ketoglutarate as cofactors. Furthermore, we found that JARID1B is up-regulated in prostate cancer tissues, compared with benign prostate samples. We also demonstrated that JARID1B associates with androgen receptor and regulates its transcriptional activity. Thus, we identified JARID1B as a demethylase capable of removing three methyl groups from histone H3 lysine 4 and up-regulated in prostate cancer.
    Type of Medium: Online Resource
    ISSN: 0027-8424 , 1091-6490
    RVK:
    RVK:
    Language: English
    Publisher: Proceedings of the National Academy of Sciences
    Publication Date: 2007
    detail.hit.zdb_id: 209104-5
    detail.hit.zdb_id: 1461794-8
    SSG: 11
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...