GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, Vol. 118, No. 6 ( 2021-02-09)
    Abstract: As all- trans retinoic acid (ATRA) and arsenic trioxide (ATO) are widely accepted in treating acute promyelocytic leukemia (APL), deescalating toxicity becomes a research hotspot. Here, we evaluated whether chemotherapy could be replaced or reduced by ATO in APL patients at different risks. After achieving complete remission with ATRA-ATO–based induction therapy, patients were randomized (1:1) into ATO and non-ATO groups for consolidation: ATRA-ATO versus ATRA–anthracycline for low-/intermediate-risk patients, or ATRA-ATO–anthracycline versus ATRA–anthracycline–cytarabine for high-risk patients. The primary end point was to assess disease-free survival (DFS) at 3 y by a noninferiority margin of –5%; 855 patients were enrolled with a median follow-up of 54.9 mo, and 658 of 755 patients could be evaluated at 3 y. In the ATO group, 96.1% (319/332) achieved 3-y DFS, compared to 92.6% (302/326) in the non-ATO group. The difference was 3.45% (95% CI –0.07 to 6.97), confirming noninferiority ( P 〈 0.001). Using the Kaplan–Meier method, the estimated 7-y DFS was 95.7% (95% CI 93.6 to 97.9) in ATO and 92.6% (95% CI 89.8 to 95.4) in non-ATO groups ( P = 0.066). Concerning secondary end points, the 7-y cumulative incidence of relapse (CIR) was significantly lower in ATO (2.2% [95% CI 1.1 to 4.2]) than in non-ATO group (6.1% [95% CI 3.9 to 9.5] , P = 0.011). In addition, grade 3 to 4 hematological toxicities were significantly reduced in the ATO group during consolidation. Hence, ATRA-ATO in both chemotherapy-replacing and -reducing settings in consolidation is not inferior to ATRA–chemotherapy ( https://www.clinicaltrials.gov/ , NCT01987297).
    Type of Medium: Online Resource
    ISSN: 0027-8424 , 1091-6490
    RVK:
    RVK:
    Language: English
    Publisher: Proceedings of the National Academy of Sciences
    Publication Date: 2021
    detail.hit.zdb_id: 209104-5
    detail.hit.zdb_id: 1461794-8
    SSG: 11
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, Vol. 117, No. 5 ( 2020-02-04), p. 2560-2569
    Abstract: De novo mutations (DNMs), or mutations that appear in an individual despite not being seen in their parents, are an important source of genetic variation whose impact is relevant to studies of human evolution, genetics, and disease. Utilizing high-coverage whole-genome sequencing data as part of the Trans-Omics for Precision Medicine (TOPMed) Program, we called 93,325 single-nucleotide DNMs across 1,465 trios from an array of diverse human populations, and used them to directly estimate and analyze DNM counts, rates, and spectra. We find a significant positive correlation between local recombination rate and local DNM rate, and that DNM rate explains a substantial portion (8.98 to 34.92%, depending on the model) of the genome-wide variation in population-level genetic variation from 41K unrelated TOPMed samples. Genome-wide heterozygosity does correlate with DNM rate, but only explains 〈 1% of variation. While we are underpowered to see small differences, we do not find significant differences in DNM rate between individuals of European, African, and Latino ancestry, nor across ancestrally distinct segments within admixed individuals. However, we did find significantly fewer DNMs in Amish individuals, even when compared with other Europeans, and even after accounting for parental age and sequencing center. Specifically, we found significant reductions in the number of C→A and T→C mutations in the Amish, which seem to underpin their overall reduction in DNMs. Finally, we calculated near-zero estimates of narrow sense heritability ( h 2 ), which suggest that variation in DNM rate is significantly shaped by nonadditive genetic effects and the environment.
    Type of Medium: Online Resource
    ISSN: 0027-8424 , 1091-6490
    RVK:
    RVK:
    Language: English
    Publisher: Proceedings of the National Academy of Sciences
    Publication Date: 2020
    detail.hit.zdb_id: 209104-5
    detail.hit.zdb_id: 1461794-8
    SSG: 11
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: The Journal of Neuroscience, Society for Neuroscience, Vol. 32, No. 14 ( 2012-04-04), p. 4887-4900
    Abstract: 17-β-Estradiol (E2) is a steroid hormone involved in neuroprotection against excitotoxicity and other forms of brain injury. Through genomic and nongenomic mechanisms, E2 modulates neuronal excitability and signal transmission by regulating NMDA and non-NMDA receptors. However, the mechanisms and identity of the receptors involved remain unclear, even though studies have suggested that estrogen G-protein-coupled receptor 30 (GPR30) is linked to protection against ischemic injury. In the culture cortical neurons, treatment with E2 and the GPR30 agonist G1 for 45 min attenuated the excitotoxicity induced by NMDA exposure. The acute neuroprotection mediated by GPR30 is dependent on G-protein-coupled signals and ERK1/2 activation, but independent on transcription or translation. Knockdown of GPR30 using short hairpin RNAs (shRNAs) significantly reduced the E2-induced rapid neuroprotection. Patch-clamp recordings revealed that GPR30 activation depressed exogenous NMDA-elicited currents. Short-term GPR30 activation did not affect the expression of either NR2A- or NR2B-containing NMDARs; however, it depressed NR2B subunit phosphorylation at Ser-1303 by inhibiting the dephosphorylation of death-associated protein kinase 1 (DAPK1). DAPK1 knockdown using shRNAs significantly blocked NR2B subunit phosphorylation at Ser-1303 and abolished the GPR30-mediated depression of exogenous NMDA-elicited currents. Lateral ventricle injection of the GPR30 agonist G1 (0.2 μg) provided significant neuroprotection in the ovariectomized female mice subjected to middle cerebral artery occlusion. These findings provide direct evidence that fast neuroprotection by estradiol is partially mediated by GPR30 and the subsequent downregulation of NR2B-containing NMDARs. The modulation of DAPK1 activity by GPR30 may be an important mediator of estradiol-dependent neuroprotection.
    Type of Medium: Online Resource
    ISSN: 0270-6474 , 1529-2401
    Language: English
    Publisher: Society for Neuroscience
    Publication Date: 2012
    detail.hit.zdb_id: 1475274-8
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, Vol. 109, No. 19 ( 2012-05-08)
    Abstract: Our approach of directly measuring lifespan along with measuring gene expressions under different dietary and other metabolic conditions permitted the identification of pathways that may directly explain lifespan changes instead of other phenotypic changes. Furthermore, our dietary perturbation-based method of gene expression analysis has successfully identified peroxisomal biogenesis factors as an important class of conserved, longevity-modifying genes. This finding provides insight into the molecular mechanisms linking diet, disease, and aging. Our results indicate that midlife liver gene expressions showing positive or negative correlation with mean lifespan across the six groups indeed constituted many genes previously implicated in aging. Importantly, the overall correlation of incremental changes in hepatic gene expression of a molecular pathway to the mean lifespan changes under these conditions could be used to identify lifespan-modifying or -regulating genes. We verified this conclusion in two ways. First, we showed that known longevity-modifying genes were enriched among genes and pathways with expression that was correlated or anticorrelated with lifespan. Second, we predicted that high expression of peroxisomal biogenesis genes might negatively influence lifespan and verified this prediction experimentally in Drosophila melanogaster and Caenorhabditis elegans , two different model organisms commonly used in aging studies. These results implicate peroxisomal biogenesis as a key determinant of longevity. In this context, we first asked if the six different dietary groups give rise to different lifespans according to their energy input and output levels. We also asked whether we could predict the lifespan differences across these groups from the midlife liver phenotypes and hepatic gene expressions and finally, whether the genes or pathways that predict the lifespan differences are regulators of lifespan ( Fig. P1 ). The fact that all of the intervention experiments were carried out in parallel rather than in different laboratories with variable or noncomparable conditions enabled us to conduct an integrative analysis free of system variations in the data. We were, thus, able to search for common target genes of different dietary interventions that contribute to the consequent lifespan differences through changes in their gene expression levels ( Fig. P1 ). We found that dietary interventions led to concordant changes in aging-related physical and physiological phenotypes. These changes were reflected by midlife gene expression differences corresponding to six different dietary regimens. To further define the mechanisms by which these interventions modulate aging, we subjected mice to six different diet/energy regimens (30 mice per group) that led to the following order of increasing lifespan: high-fat (HF) diet fed ad libitum, HF diet combined with voluntary exercise (HF + Ex), low-fat (LF) diet fed ad libitum, LF diet with voluntary Ex (LF + Ex), HF diet combined with 70% CR (HF + CR), and LF diet with 70% CR (LF + CR). In addition to lifespan, health span parameters were assessed for each cohort, including liver and metabolic functions. Gene expression profiles were obtained at midlife before the increase in mortality. Aging-related gene expressions have been examined for various organisms, and many genes and biological functions that change with age have been revealed. Moreover, genetic, dietary, or reproductive interventions have been shown to effectively modulate lifespan and aging ( 1 , 2 ). Caloric restriction (CR) is the best-studied of these interventions and is reported to prolong both mean and maximal lifespans in most organisms examined ( 1 , 2 ). In contrast, high-fat/high-calorie diets cause health problems and shortened lifespans in mice ( 3 , 4 ). Exercise, however, can prevent some age-related declines ( 5 ). It is, therefore, not surprising that nutrient and energy-sensing pathways have been identified as key regulators of lifespan and aging. Dietary interventions are effective ways of extending or shortening lifespan. By examining midlife hepatic gene expressions in mice under different dietary conditions and their correlation with lifespans, we not only identified well-known diet-responsive, lifespan-regulating pathways, such as the mitochondrial genes, but also predicted some unique or underappreciated ones, such as the peroxisomal biogenesis pathway. We found that lowering the expression of peroxisome proliferation genes decreased cellular peroxide levels and extended the lifespan of fruit flies and worms. These findings show that transcriptional changes resulting from dietary interventions can effectively reflect causal factors in aging and identify longevity pathways.
    Type of Medium: Online Resource
    ISSN: 0027-8424 , 1091-6490
    RVK:
    RVK:
    Language: English
    Publisher: Proceedings of the National Academy of Sciences
    Publication Date: 2012
    detail.hit.zdb_id: 209104-5
    detail.hit.zdb_id: 1461794-8
    SSG: 11
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Online Resource
    Online Resource
    Proceedings of the National Academy of Sciences ; 2020
    In:  Proceedings of the National Academy of Sciences Vol. 117, No. 12 ( 2020-03-24), p. 6910-6917
    In: Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, Vol. 117, No. 12 ( 2020-03-24), p. 6910-6917
    Abstract: Auxin is a class of plant hormone that plays a crucial role in the life cycle of plants, particularly in the growth response of plants to ever-changing environments. Since the auxin responses are concentration-dependent and higher auxin concentrations might often be inhibitory, the optimal endogenous auxin level must be closely controlled. However, the underlying mechanism governing auxin homeostasis remains largely unknown. In this study, a UDP-glycosyltransferase (UGT76F1) was identified from Arabidopsis thaliana , which participates in the regulation of auxin homeostasis by glucosylation of indole-3-pyruvic acid (IPyA), a major precursor of the auxin indole-3-acetic acid (IAA) biosynthesis, in the formation of IPyA glucose conjugates (IPyA-Glc). In addition, UGT76F1 was found to mediate hypocotyl growth by modulating active auxin levels in a light- and temperature-dependent manner. Moreover, the transcription of UGT76F1 was demonstrated to be directly and negatively regulated by PIF4, which is a key integrator of both light and temperature signaling pathways. This study sheds a light on the trade-off between IAA biosynthesis and IPyA-Glc formation in controlling auxin levels and reveals a regulatory mechanism for plant growth adaptation to environmental changes through glucosylation of IPyA.
    Type of Medium: Online Resource
    ISSN: 0027-8424 , 1091-6490
    RVK:
    RVK:
    Language: English
    Publisher: Proceedings of the National Academy of Sciences
    Publication Date: 2020
    detail.hit.zdb_id: 209104-5
    detail.hit.zdb_id: 1461794-8
    SSG: 11
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Online Resource
    Online Resource
    Proceedings of the National Academy of Sciences ; 2020
    In:  Proceedings of the National Academy of Sciences Vol. 117, No. 42 ( 2020-10-20), p. 26151-26157
    In: Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, Vol. 117, No. 42 ( 2020-10-20), p. 26151-26157
    Abstract: Emerging evidence suggests a resurgence of COVID-19 in the coming years. It is thus critical to optimize emergency response planning from a broad, integrated perspective. We developed a mathematical model incorporating climate-driven variation in community transmissions and movement-modulated spatial diffusions of COVID-19 into various intervention scenarios. We find that an intensive 8-wk intervention targeting the reduction of local transmissibility and international travel is efficient and effective. Practically, we suggest a tiered implementation of this strategy where interventions are first implemented at locations in what we call the Global Intervention Hub, followed by timely interventions in secondary high-risk locations. We argue that thinking globally, categorizing locations in a hub-and-spoke intervention network, and acting locally, applying interventions at high-risk areas, is a functional strategy to avert the tremendous burden that would otherwise be placed on public health and society.
    Type of Medium: Online Resource
    ISSN: 0027-8424 , 1091-6490
    RVK:
    RVK:
    Language: English
    Publisher: Proceedings of the National Academy of Sciences
    Publication Date: 2020
    detail.hit.zdb_id: 209104-5
    detail.hit.zdb_id: 1461794-8
    SSG: 11
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...