GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Science, American Association for the Advancement of Science (AAAS), Vol. 379, No. 6634 ( 2023-02-24)
    Abstract: Surface material from the near-Earth carbonaceous (C-type) asteroid (162173) Ryugu was collected and brought to Earth by the Hayabusa2 spacecraft. Ryugu is a dark, primitive asteroid containing hydrous minerals that are similar to the most hydrated carbonaceous meteorites. C-type asteroids are common in the asteroid belt and have been proposed as the parent bodies of carbonaceous meteorites. The samples of Ryugu provide an opportunity to investigate organic compounds for comparison with those from carbonaceous meteorites. Unlike meteorites, the Ryugu samples were collected and delivered for study under controlled conditions, reducing terrestrial contamination and the effects of atmospheric entry. RATIONALE Primitive carbonaceous chondrite meteorites are known to contain a variety of soluble organic molecules (SOMs), including prebiotic molecules such as amino acids. Meteorites might have delivered amino acids and other prebiotic organic molecules to the early Earth and other rocky planets. Organic matter in the Ryugu samples is the product of physical and chemical processes that occurred in the interstellar medium, the protosolar nebula, and/or on the planetesimal that became Ryugu’s parent body. We investigated SOMs in Ryugu samples principally using mass spectrometry coupled with liquid or gas chromatography. RESULTS We identified numerous organic molecules in the Ryugu samples. Mass spectroscopy detected hundreds of thousands of ion signals, which we assigned to ~20,000 elementary compositions consisting of carbon, hydrogen, nitrogen, oxygen, and/or sulfur. Fifteen amino acids, including glycine, alanine, and α-aminobutyric acid, were identified. These were present as racemic mixtures (equal right- and left-handed abundances), consistent with an abiotic origin. Aliphatic amines (such as methylamine) and carboxylic acids (such as acetic acid) were also detected, likely retained on Ryugu as organic salts. The presence of aromatic hydrocarbons, including alkylbenzenes, fluoranthene, and pyrene, implies hydrothermal processing on Ryugu’s parent body and/or presolar synthesis in the interstellar medium. Nitrogen-containing heterocyclic compounds were identified as their alkylated homologs, which could have been synthesized from simple aldehydes and ammonia. In situ analysis of a grain surface showed heterogeneous spatial distribution of alkylated homologs of nitrogen- and/or oxygen-containing compounds. CONCLUSION The wide variety of molecules identified indicates that prolonged chemical processes contributed to the synthesis of soluble organics on Ryugu or its parent body. The highly diverse mixture of SOMs in the samples resembles that seen in some carbonaceous chondrites. However, the SOM concentration in Ryugu is less than that in moderately aqueously altered CM (Mighei-type) chondrites, being more similar to that seen in warm aqueously altered CI (Ivuna-type) chondrites. The chemical diversity with low SOM concentration in Ryugu is consistent with aqueous organic chemistry at modest temperatures on Ryugu’s parent asteroid. The samples collected from the surface of Ryugu were exposed to the hard vacuum of space, energetic particle irradiation, heating by sunlight, and micrometeoroid impacts, but the SOM is still preserved, likely by being associated with minerals. The presence of prebiotic molecules on the asteroid surface suggests that these molecules can be transported throughout the Solar System. SOMs detected in surface samples of asteroid Ryugu. Chemical structural models are shown for example molecules from several classes identified in the Ryugu samples. Gray balls are carbon, white are hydrogen, red are oxygen, and blue are nitrogen. Clockwise from top: amines (represented by ethylamine), nitrogen-containing heterocycles (pyridine), a photograph of the sample vials for analysis, polycyclic aromatic hydrocarbons (PAHs) (pyrene), carboxylic acids (acetic acid), and amino acids (β-alanine). The central hexagon shows a photograph of the Ryugu sample in the sample collector of the Hayabusa2 spacecraft. The background image shows Ryugu in a photograph taken by Hayabusa2. CREDIT: JAXA, University of Tokyo, Kochi University, Rikkyo University, Nagoya University, Chiba Institute of Technology, Meiji University, University of Aizu, AIST, NASA, Dan Gallagher.
    Type of Medium: Online Resource
    ISSN: 0036-8075 , 1095-9203
    RVK:
    RVK:
    Language: English
    Publisher: American Association for the Advancement of Science (AAAS)
    Publication Date: 2023
    detail.hit.zdb_id: 128410-1
    detail.hit.zdb_id: 2066996-3
    detail.hit.zdb_id: 2060783-0
    SSG: 11
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, Vol. 114, No. 19 ( 2017-05-09)
    Abstract: The carcinogenic mechanism of extrahepatic cholangiocarcinoma (ECC) is unclear, due at least in part to the lack of an appropriate mouse model. Because human studies have reported frequent genetic alterations in the Ras- and TGFβ/SMAD-signaling pathways in ECC, mice with tamoxifen-inducible, duct-cell–specific Kras activation and a TGFβ receptor type 2 (TGFβR2) deletion were first generated by crossing LSL-Kras G12D , Tgfbr2 flox/flox , and K19 CreERT mice ( KT-K19 CreERT ). However, KT-K19 CreERT mice showed only mild hyperplasia of biliary epithelial cells (BECs) in the extrahepatic bile duct (EHBD) and died within 7 wk, probably a result of lung adenocarcinomas. Next, to analyze the additional effect of E-cadherin loss, KT-K19 CreERT mice were crossed with CDH1 flox/flox mice ( KTC-K19 CreERT ). Surprisingly, KTC-K19 CreERT mice exhibited a markedly thickened EHBD wall accompanied by a swollen gallbladder within 4 wk after tamoxifen administration. Histologically, invasive periductal infiltrating-type ECC with lymphatic metastasis was observed. Time-course analysis of EHBD revealed that recombined BECs lining the bile duct lumen detached due to E-cadherin loss, whereas recombined cells could survive in the peribiliary glands (PBGs), which are considered a BEC stem-cell niche. Detached dying BECs released high levels of IL-33, as determined by microarray analysis using biliary organoids, and stimulated inflammation and a regenerative response by PBGs, leading eventually to ECC development. Cell lineage tracing suggested PBGs as the cellular origin of ECC. IL-33 cooperated with Kras and TGFβR2 mutations in the development of ECC, and anti–IL-33 treatment suppressed ECC development significantly. Thus, this mouse model provided insight into the carcinogenic mechanisms, cellular origin, and potential therapeutic targets of ECC.
    Type of Medium: Online Resource
    ISSN: 0027-8424 , 1091-6490
    RVK:
    RVK:
    Language: English
    Publisher: Proceedings of the National Academy of Sciences
    Publication Date: 2017
    detail.hit.zdb_id: 209104-5
    detail.hit.zdb_id: 1461794-8
    SSG: 11
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    Proceedings of the National Academy of Sciences ; 2002
    In:  Proceedings of the National Academy of Sciences Vol. 99, No. 22 ( 2002-10-29), p. 14536-14541
    In: Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, Vol. 99, No. 22 ( 2002-10-29), p. 14536-14541
    Abstract: The Rab3 GDP/GTP exchange protein (Rab3 GEP) activates the Rab3 small GTP-binding protein (G protein) family, including Rab3A that is an important member controlling synaptic vesicle trafficking. Here, we examined the role of Rab3 GEP in regulating neurotransmitter release in autapses of mouse hippocampal neurons in culture. The release probability was markedly reduced in Rab3 GEP−/− neurons, whereas the readily releasable pool size was not different between WT and Rab3 GEP−/− neurons, indicating that Rab3 GEP up-regulates a postdocking step of synaptic exocytosis. Because Rab3A reportedly down-regulates Ca 2+ -triggered fusion of synaptic vesicles, these results provide evidence for a role of Rab3 GEP in the postdocking process distinct from Rab3A activation.
    Type of Medium: Online Resource
    ISSN: 0027-8424 , 1091-6490
    RVK:
    RVK:
    Language: English
    Publisher: Proceedings of the National Academy of Sciences
    Publication Date: 2002
    detail.hit.zdb_id: 209104-5
    detail.hit.zdb_id: 1461794-8
    SSG: 11
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: Science, American Association for the Advancement of Science (AAAS), Vol. 367, No. 6474 ( 2020-01-10), p. 210-214
    Abstract: The chronology of the World Heritage Site of Sangiran in Indonesia is crucial for the understanding of human dispersals and settlement in Asia in the Early Pleistocene (before 780,000 years ago). It has been controversial, however, especially regarding the timing of the earliest hominin migration into the Sangiran region. We use a method of combining fission-track and uranium-lead dating and present key ages to calibrate the lower (older) Sangiran hominin-bearing horizons. We conclude that the first appearance datum for the Sangiran hominins is most likely ~1.3 million years ago and less than 1.5 million years ago, which is markedly later than the dates that have been widely accepted for the past two decades.
    Type of Medium: Online Resource
    ISSN: 0036-8075 , 1095-9203
    RVK:
    RVK:
    Language: English
    Publisher: American Association for the Advancement of Science (AAAS)
    Publication Date: 2020
    detail.hit.zdb_id: 128410-1
    detail.hit.zdb_id: 2066996-3
    detail.hit.zdb_id: 2060783-0
    SSG: 11
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    In: Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, Vol. 111, No. 3 ( 2014-01-21), p. 1090-1095
    Abstract: E-cadherin is an important adhesion molecule whose loss is associated with progression and poor prognosis of liver cancer. However, it is unclear whether the loss of E-cadherin is a real culprit or a bystander in liver cancer progression. In addition, the precise role of E-cadherin in maintaining liver homeostasis is also still unknown, especially in vivo. Here we demonstrate that liver-specific E-cadherin knockout mice develop spontaneous periportal inflammation via an impaired intrahepatic biliary network, as well as periductal fibrosis, which resembles primary sclerosing cholangitis. Inducible gene knockout studies identified E-cadherin loss in biliary epithelial cells as a causal factor of cholangitis induction. Furthermore, a few of the E-cadherin knockout mice developed spontaneous liver cancer. When knockout of E-cadherin is combined with Ras activation or chemical carcinogen administration, E-cadherin knockout mice display markedly accelerated carcinogenesis and an invasive phenotype associated with epithelial–mesenchymal transition, up-regulation of stem cell markers, and elevated ERK activation. Also in human hepatocellular carcinoma, E-cadherin loss correlates with increased expression of mesenchymal and stem cell markers, and silencing of E-cadherin in hepatocellular carcinoma cell lines causes epithelial–mesenchymal transition and increased invasiveness, suggesting that E-cadherin loss can be a causal factor of these phenotypes. Thus, E-cadherin plays critical roles in maintaining homeostasis and suppressing carcinogenesis in the liver.
    Type of Medium: Online Resource
    ISSN: 0027-8424 , 1091-6490
    RVK:
    RVK:
    Language: English
    Publisher: Proceedings of the National Academy of Sciences
    Publication Date: 2014
    detail.hit.zdb_id: 209104-5
    detail.hit.zdb_id: 1461794-8
    SSG: 11
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    In: Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, Vol. 108, No. 16 ( 2011-04-19), p. 6668-6673
    Abstract: UV radiation induces systemic immunosuppression. Because nonsteroidal anti-inflammatory drugs suppress UV-induced immunosuppression, prostanoids have been suspected as a crucial mediator of this UV effect. However, the identity of the prostanoid involved and its mechanism of action remain unclear. Here, we addressed this issue by subjecting mice deficient in each prostanoid receptor individually or mice treated with a subtype-specific antagonist to UV irradiation. Mice treated with an antagonist for prostaglandin E receptor subtype 4 (EP4), but not those deficient in other prostanoid receptors, show impaired UV-induced immunosuppression, whereas administration of an EP4 agonist rescues the impairment of the UV-induced immunosuppression in indomethacin-treated mice. The EP4 antagonist treatment suppresses an increase in the number of CD4 + /forkhead box P3-positive (Foxp3 + ) regulatory T cells (Treg cells) in the peripheral lymph nodes (LNs) and dendritic cells expressing DEC205 in the LNs and the skin after UV irradiation. Furthermore, the EP4 antagonist treatment down-regulates UV-induced expression of receptor activator of NF-κB ligand (RANKL) in skin keratinocytes. Finally, administration of anti-RANKL antibody abolishes the restoration of UV-induced immunosuppression by EP4 agonism in indomethacin-treated mice. Thus, prostaglandin E 2 (PGE 2 )–EP4 signaling mediates UV-induced immunosuppression by elevating the number of Treg cells through regulation of RANKL expression in the epidermis.
    Type of Medium: Online Resource
    ISSN: 0027-8424 , 1091-6490
    RVK:
    RVK:
    Language: English
    Publisher: Proceedings of the National Academy of Sciences
    Publication Date: 2011
    detail.hit.zdb_id: 209104-5
    detail.hit.zdb_id: 1461794-8
    SSG: 11
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Online Resource
    Online Resource
    Acoustical Society of America (ASA) ; 1988
    In:  The Journal of the Acoustical Society of America Vol. 84, No. S1 ( 1988-11-01), p. S41-S41
    In: The Journal of the Acoustical Society of America, Acoustical Society of America (ASA), Vol. 84, No. S1 ( 1988-11-01), p. S41-S41
    Abstract: A new model of auditory prosthesis using a newly developed electrode is proposed. This prosthesis is less invasive than conventional ones because it can be placed superficially over the round window membrane of the cochlea rather than being inserted into the scala tympani. The electrode is coated with polyvinyl alcohol gel and is suitable as an extracochlear prosthesis because the electrode can firmly adhere to the round window membrane without damaging it. As a speech coding method, a new idea has been proposed to simultaneously transmit the pitch signal and the second formant frequency through the electrode. In this method, an additional stimulation pulse is inserted between successive pitch pulses, and the time delay between the additional pulse and the preceding pitch pulse is set in proportion to the second formant frequency. Two digital signal processors are used to extract the pitch and the second formant frequencies in real time. These time sequential stimuli are used for deaf patients. This new method of speech coding has proven effective for discrimination of the five Japanese vowels, and also for discrimination among pitch patterns.
    Type of Medium: Online Resource
    ISSN: 0001-4966 , 1520-8524
    RVK:
    Language: English
    Publisher: Acoustical Society of America (ASA)
    Publication Date: 1988
    detail.hit.zdb_id: 1461063-2
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Online Resource
    Online Resource
    Society for Neuroscience ; 2006
    In:  The Journal of Neuroscience Vol. 26, No. 15 ( 2006-04-12), p. 4046-4053
    In: The Journal of Neuroscience, Society for Neuroscience, Vol. 26, No. 15 ( 2006-04-12), p. 4046-4053
    Abstract: Magnetoencephalographic (MEG) studies have revealed enhancement of neural activity of the N1m response of auditory evoked fields in long-term trained musicians, reflecting neuroplastic modification of the representation of the auditory cortex. In contrast, the amplitude of the P2 response of auditory evoked potentials is modified by musical experience, with no alteration of N1. Here, we performed a comprehensive MEG study using stimulation of successive musical-instrument tones to examine how the neural activities of different MEG responses are modified in long-term experienced musicians who commenced musical lessons at ages of ∼5 years and had continued to practice. The dipole moment of the P2m response occurring at 160–180 ms was significantly enlarged in musicians compared with that in individuals who had not received musical lessons. The enlargement was found for the dipole moment of N1m occurring at 100–120 ms in a restricted condition but not for the moment of P1m at 50–60 ms. Furthermore, the dipole moment of P2m for successive stimuli, normalized by the moment for the first stimulus, was significantly larger for chord tones than single tones and was significantly larger in the musicians than controls. These results suggest that the P2m response is susceptible to be modified by musical training in a period of neural maturation, with a short refractory period of neural activity for the auditory input of composite tones. The P2m activity may be specialized to the processing of multifrequency sounds, such as musical timbre consisting of abundant harmonics.
    Type of Medium: Online Resource
    ISSN: 0270-6474 , 1529-2401
    Language: English
    Publisher: Society for Neuroscience
    Publication Date: 2006
    detail.hit.zdb_id: 1475274-8
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    In: Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, Vol. 108, No. 2 ( 2011-01-11), p. 780-785
    Abstract: Mitogen-activated protein kinase (MAPK) pathways regulate multiple cellular functions and are highly active in many types of human cancers. Apoptosis signal-regulating kinase 1 (ASK1) is an upstream MAPK involved in apoptosis, inflammation, and carcinogenesis. This study investigated the role of ASK1 in the development of gastric cancer. In human gastric cancer specimens, we observed increased ASK1 expression, compared to nontumor epithelium. Using a chemically induced murine gastric tumorigenesis model, we observed increased tumor ASK1 expression, and ASK1 knockout mice had both fewer and smaller tumors than wild-type (WT) mice. ASK1 siRNA inhibited cell proliferation through the accumulation of cells in G1 phase of the cell cycle, and reduced cyclin D1 expression in gastric cancer cells, whereas these effects were uncommon in other cancer cells. ASK1 overexpression induced the transcription of cyclin D1, through AP-1 activation, and ASK1 levels were regulated by cyclin D1, via the Rb–E2F pathway. Exogenous ASK1 induced cyclin D1 expression, followed by elevated expression of endogenous ASK1. These results indicate an autoregulatory mechanism of ASK1 in the development of gastric cancer. Targeting this positive feedback loop, ASK1 may present a potential therapeutic target for the treatment of advanced gastric cancer.
    Type of Medium: Online Resource
    ISSN: 0027-8424 , 1091-6490
    RVK:
    RVK:
    Language: English
    Publisher: Proceedings of the National Academy of Sciences
    Publication Date: 2011
    detail.hit.zdb_id: 209104-5
    detail.hit.zdb_id: 1461794-8
    SSG: 11
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    In: Science, American Association for the Advancement of Science (AAAS), Vol. 287, No. 5460 ( 2000-03-17), p. 2013-2017
    Abstract: Allergic asthma is caused by the aberrant expansion in the lung of T helper cells that produce type 2 (T H 2) cytokines and is characterized by infiltration of eosinophils and bronchial hyperreactivity. This disease is often triggered by mast cells activated by immunoglobulin E (IgE)–mediated allergic challenge. Activated mast cells release various chemical mediators, including prostaglandin D 2 (PGD 2 ), whose role in allergic asthma has now been investigated by the generation of mice deficient in the PGD receptor (DP). Sensitization and aerosol challenge of the homozygous mutant (DP −/− ) mice with ovalbumin (OVA) induced increases in the serum concentration of IgE similar to those in wild-type mice subjected to this model of asthma. However, the concentrations of T H 2 cytokines and the extent of lymphocyte accumulation in the lung of OVA-challenged DP −/− mice were greatly reduced compared with those in wild-type animals. Moreover, DP −/− mice showed only marginal infiltration of eosinophils and failed to develop airway hyperreactivity. Thus, PGD 2 functions as a mast cell–derived mediator to trigger asthmatic responses.
    Type of Medium: Online Resource
    ISSN: 0036-8075 , 1095-9203
    RVK:
    RVK:
    Language: English
    Publisher: American Association for the Advancement of Science (AAAS)
    Publication Date: 2000
    detail.hit.zdb_id: 128410-1
    detail.hit.zdb_id: 2066996-3
    detail.hit.zdb_id: 2060783-0
    SSG: 11
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...