GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, Vol. 113, No. 2 ( 2016-01-12), p. 458-463
    Abstract: We calculated a simple indicator of food availability using data from 93 sites in 17 countries across contrasted agroecologies in sub-Saharan Africa ( 〉 13,000 farm households) and analyzed the drivers of variations in food availability. Crop production was the major source of energy, contributing 60% of food availability. The off-farm income contribution to food availability ranged from 12% for households without enough food available (18% of the total sample) to 27% for the 58% of households with sufficient food available. Using only three explanatory variables (household size, number of livestock, and land area), we were able to predict correctly the agricultural determined status of food availability for 72% of the households, but the relationships were strongly influenced by the degree of market access. Our analyses suggest that targeting poverty through improving market access and off-farm opportunities is a better strategy to increase food security than focusing on agricultural production and closing yield gaps. This calls for multisectoral policy harmonization, incentives, and diversification of employment sources rather than a singular focus on agricultural development. Recognizing and understanding diversity among smallholder farm households in sub-Saharan Africa is key for the design of policies that aim to improve food security.
    Type of Medium: Online Resource
    ISSN: 0027-8424 , 1091-6490
    RVK:
    RVK:
    Language: English
    Publisher: Proceedings of the National Academy of Sciences
    Publication Date: 2016
    detail.hit.zdb_id: 209104-5
    detail.hit.zdb_id: 1461794-8
    SSG: 11
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Science, American Association for the Advancement of Science (AAAS), Vol. 377, No. 6610 ( 2022-09-02), p. 1051-1053
    Abstract: Much effort has been expended globally over the past four decades to craft and update country-specific and multinational safety regulations that can be applied to crops developed by genetic engineering processes, while exempting conventionally bred crops. This differentiation made some sense in the 1980s, but in light of technological advances, it is no longer scientifically defensible. In the coming decades, innovations in genetic engineering and modern “conventional” processes of crop development will enable use of these approaches to alter more crops and more traits. Future governance of new plant varieties and foods, regardless of the processes and techniques used to develop them, will require new, scientifically sound assessment methodologies, developed in a manner acceptable to society. Here, we provide a rationale for one governance approach that moves away from current process-based regulation and uses newly developed molecular techniques that enable detailed characterization of the new crops and foods themselves.
    Type of Medium: Online Resource
    ISSN: 0036-8075 , 1095-9203
    RVK:
    RVK:
    Language: English
    Publisher: American Association for the Advancement of Science (AAAS)
    Publication Date: 2022
    detail.hit.zdb_id: 128410-1
    detail.hit.zdb_id: 2066996-3
    detail.hit.zdb_id: 2060783-0
    SSG: 11
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    Proceedings of the National Academy of Sciences ; 2012
    In:  Proceedings of the National Academy of Sciences Vol. 109, No. 16 ( 2012-04-17), p. 6348-6353
    In: Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, Vol. 109, No. 16 ( 2012-04-17), p. 6348-6353
    Abstract: Phosphorus (P) is a finite and dwindling resource. Debate focuses on current production and use of phosphate rock rather than on the amounts of P required in the future to feed the world. We applied a two-pool soil P model to reproduce historical continental crop P uptake as a function of P inputs from fertilizer and manure and to estimate P requirements for crop production in 2050. The key feature is the consideration of the role of residual soil P in crop production. Model simulations closely fit historical P uptake for all continents. Cumulative inputs of P fertilizer and manure for the period 1965–2007 in Europe (1,115 kg⋅ha −1 of cropland) grossly exceeded the cumulative P uptake by crops (360 kg⋅ha −1 ). Since the 1980s in much of Europe, P application rates have been reduced, and uptake continues to increase due to the supply of plant-available P from residual soil P pool. We estimate that between 2008 and 2050 a global cumulative P application of 700–790 kg⋅ha −1 of cropland (in total 1,070–1,200 teragrams P) is required to achieve crop production according to the various Millennium Ecosystem Assessment scenarios [Alcamo J, Van Vuuren D, Cramer W (2006) Ecosystems and Human Well-Being: Scenarios, Vol 2, pp 279–354]. We estimate that average global P fertilizer use must change from the current 17.8 to 16.8–20.8 teragrams per year in 2050, which is up to 50% less than other estimates in the literature that ignore the role of residual soil P.
    Type of Medium: Online Resource
    ISSN: 0027-8424 , 1091-6490
    RVK:
    RVK:
    Language: English
    Publisher: Proceedings of the National Academy of Sciences
    Publication Date: 2012
    detail.hit.zdb_id: 209104-5
    detail.hit.zdb_id: 1461794-8
    SSG: 11
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...