GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    Informa UK Limited ; 2016
    In:  Language, Cognition and Neuroscience Vol. 31, No. 9 ( 2016-10-20), p. 1130-1149
    In: Language, Cognition and Neuroscience, Informa UK Limited, Vol. 31, No. 9 ( 2016-10-20), p. 1130-1149
    Type of Medium: Online Resource
    ISSN: 2327-3798 , 2327-3801
    RVK:
    Language: English
    Publisher: Informa UK Limited
    Publication Date: 2016
    detail.hit.zdb_id: 2753366-9
    SSG: 5,2
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    Proceedings of the National Academy of Sciences ; 2012
    In:  Proceedings of the National Academy of Sciences Vol. 109, No. 26 ( 2012-06-26), p. 10239-10244
    In: Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, Vol. 109, No. 26 ( 2012-06-26), p. 10239-10244
    Abstract: Compressional wave velocity-density ( V P  -  ρ ) relations of candidate Fe alloys at relevant pressure-temperature conditions of the Earth’s core are critically needed to evaluate the composition, seismic signatures, and geodynamics of the planet’s remotest region. Specifically, comparison between seismic V P  -  ρ profiles of the core and candidate Fe alloys provides first-order information on the amount and type of potential light elements—including H, C, O, Si, and/or S—needed to compensate the density deficit of the core. To address this issue, here we have surveyed and analyzed the literature results in conjunction with newly measured V P  -  ρ results of hexagonal closest-packed (hcp) Fe and hcp-Fe 0.85 Si 0.15 alloy using in situ high-energy resolution inelastic X-ray scattering and X-ray diffraction. The nature of the Fe-Si alloy where Si is readily soluble in Fe represents an ideal solid-solution case to better understand the light-element alloying effects. Our results show that high temperature significantly decreases the V P of hcp-Fe at high pressures, and the Fe-Si alloy exhibits similar high-pressure V P  -  ρ behavior to hcp-Fe via a constant density offset. These V P  -  ρ data at a given temperature can be better described by an empirical power-law function with a concave behavior at higher densities than with a linear approximation. Our new datasets, together with literature results, allow us to build new V P  -  ρ models of Fe alloys in order to determine the chemical composition of the core. Our models show that the V P  -  ρ profile of Fe with 8 wt % Si at 6,000 K matches well with the Preliminary Reference Earth Model of the inner core.
    Type of Medium: Online Resource
    ISSN: 0027-8424 , 1091-6490
    RVK:
    RVK:
    Language: English
    Publisher: Proceedings of the National Academy of Sciences
    Publication Date: 2012
    detail.hit.zdb_id: 209104-5
    detail.hit.zdb_id: 1461794-8
    SSG: 11
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    Proceedings of the National Academy of Sciences ; 2021
    In:  Proceedings of the National Academy of Sciences Vol. 118, No. 1 ( 2021-01-05)
    In: Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, Vol. 118, No. 1 ( 2021-01-05)
    Abstract: The coronavirus disease 2019 (COVID-19) pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has emerged as a major threat to global health. Although varied SARS-CoV-2–related coronaviruses have been isolated from bats and SARS-CoV-2 may infect bat, the structural basis for SARS-CoV-2 to utilize the human receptor counterpart bat angiotensin-converting enzyme 2 (bACE2) for virus infection remains less understood. Here, we report that the SARS-CoV-2 spike protein receptor binding domain (RBD) could bind to bACE2 from Rhinolophus macrotis (bACE2-Rm) with substantially lower affinity compared with that to the human ACE2 (hACE2), and its infectivity to host cells expressing bACE2-Rm was confirmed with pseudotyped SARS-CoV-2 virus and SARS-CoV-2 wild virus. The structure of the SARS-CoV-2 RBD with the bACE2-Rm complex was determined, revealing a binding mode similar to that of hACE2. The analysis of binding details between SARS-CoV-2 RBD and bACE2-Rm revealed that the interacting network involving Y41 and E42 of bACE2-Rm showed substantial differences with that to hACE2. Bats have extensive species diversity and the residues for RBD binding in bACE2 receptor varied substantially among different bat species. Notably, the Y41H mutant, which exists in many bats, attenuates the binding capacity of bACE2-Rm, indicating the central roles of Y41 in the interaction network. These findings would benefit our understanding of the potential infection of SARS-CoV-2 in varied species of bats.
    Type of Medium: Online Resource
    ISSN: 0027-8424 , 1091-6490
    RVK:
    RVK:
    Language: English
    Publisher: Proceedings of the National Academy of Sciences
    Publication Date: 2021
    detail.hit.zdb_id: 209104-5
    detail.hit.zdb_id: 1461794-8
    SSG: 11
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, Vol. 119, No. 11 ( 2022-03-15)
    Abstract: The ability of viruses to mutate and evade the human immune system and neutralizing antibodies remains an obstacle to antiviral and vaccine development. Many neutralizing antibodies, including some approved for emergency use authorization (EUA), reduced or lost activity against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants. Here, we introduce a geometric deep learning algorithm that efficiently enhances antibody affinity to achieve broader and more potent neutralizing activity against such variants. We demonstrate the utility of our approach on a human antibody P36-5D2, which is effective against SARS-CoV-2 Alpha, Beta, and Gamma but not Delta. We show that our geometric neural network model optimizes this antibody’s complementarity-determining region (CDR) sequences to improve its binding affinity against multiple SARS-CoV-2 variants. Through iterative optimization of the CDR regions and experimental measurements, we enable expanded antibody breadth and improved potency by ∼10- to 600-fold against SARS-CoV-2 variants, including Delta. We have also demonstrated that our approach can identify CDR changes that alleviate the impact of two Omicron mutations on the epitope. These results highlight the power of our deep learning approach in antibody optimization and its potential application to engineering other protein molecules. Our optimized antibodies can potentially be developed into antibody drug candidates for current and emerging SARS-CoV-2 variants.
    Type of Medium: Online Resource
    ISSN: 0027-8424 , 1091-6490
    RVK:
    RVK:
    Language: English
    Publisher: Proceedings of the National Academy of Sciences
    Publication Date: 2022
    detail.hit.zdb_id: 209104-5
    detail.hit.zdb_id: 1461794-8
    SSG: 11
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Online Resource
    Online Resource
    Proceedings of the National Academy of Sciences ; 2018
    In:  Proceedings of the National Academy of Sciences Vol. 115, No. 17 ( 2018-04-24), p. 4435-4440
    In: Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, Vol. 115, No. 17 ( 2018-04-24), p. 4435-4440
    Abstract: Cells have developed regulatory mechanisms that underlie flagellar assembly and maintenance, including the transcriptional regulation of flagellar genes, an initial step for making flagella. Although transcriptional regulation of flagellar gene expression is required for flagellar assembly in Chlamydomonas , no transcription factor that regulates the transcription of flagellar genes has been identified. We report that X chromosome-associated protein 5 (XAP5) acts as a transcription factor to regulate flagellar assembly in Chlamydomonas . While XAP5 proteins are evolutionarily conserved across diverse organisms and play vital roles in diverse biological processes, nothing is known about the biochemical function of any member of this important protein family. Our data show that loss of XAP5 leads to defects in flagellar assembly. Posttranslational modifications of XAP5 track flagellar length during flagellar assembly, suggesting that cells possess a feedback system that modulates modifications to XAP5. Notably, XAP5 regulates flagellar gene expression via directly binding to a motif containing a CTGGGGTG-core. Furthermore, recruitment of RNA polymerase II (Pol II) machinery for transcriptional activation depends on the activities of XAP5. Our data demonstrate that, through recruitment of Pol II, XAP5 defines a class of transcription factors for transcriptional regulation of ciliary genes. This work provides insights into the biochemical function of the XAP5 family and the fundamental biology of the flagellar assembly, which enhance our understanding of the signaling and functions of flagella.
    Type of Medium: Online Resource
    ISSN: 0027-8424 , 1091-6490
    RVK:
    RVK:
    Language: English
    Publisher: Proceedings of the National Academy of Sciences
    Publication Date: 2018
    detail.hit.zdb_id: 209104-5
    detail.hit.zdb_id: 1461794-8
    SSG: 11
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...