GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    Proceedings of the National Academy of Sciences ; 2020
    In:  Proceedings of the National Academy of Sciences Vol. 117, No. 43 ( 2020-10-27), p. 26651-26659
    In: Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, Vol. 117, No. 43 ( 2020-10-27), p. 26651-26659
    Abstract: The 1257 CE eruption of Mount Samalas (Indonesia) is the source of the largest stratospheric injection of volcanic gases in the Common Era. Sulfur dioxide emissions produced sulfate aerosols that cooled Earth’s climate with a range of impacts on society. The coemission of halogenated species has also been speculated to have led to wide-scale ozone depletion. Here we present simulations from HadGEM3-ES, a fully coupled Earth system model, with interactive atmospheric chemistry and a microphysical treatment of sulfate aerosol, used to assess the chemical and climate impacts from the injection of sulfur and halogen species into the stratosphere as a result of the Mt. Samalas eruption. While our model simulations support a surface air temperature response to the eruption of the order of −1°C, performing well against multiple reconstructions of surface temperature from tree-ring records, we find little evidence to support significant injections of halogens into the stratosphere. Including modest fractions of the halogen emissions reported from Mt. Samalas leads to significant impacts on the composition of the atmosphere and on surface temperature. As little as 20% of the halogen inventory from Mt. Samalas reaching the stratosphere would result in catastrophic ozone depletion, extending the surface cooling caused by the eruption. However, based on available proxy records of surface temperature changes, our model results support only very minor fractions (1%) of the halogen inventory reaching the stratosphere and suggest that further constraints are needed to fully resolve the issue.
    Type of Medium: Online Resource
    ISSN: 0027-8424 , 1091-6490
    RVK:
    RVK:
    Language: English
    Publisher: Proceedings of the National Academy of Sciences
    Publication Date: 2020
    detail.hit.zdb_id: 209104-5
    detail.hit.zdb_id: 1461794-8
    SSG: 11
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...