GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Linguistics  (902)
Material
Language
  • 11
    In: Science, American Association for the Advancement of Science (AAAS), Vol. 380, No. 6640 ( 2023-04-07)
    Abstract: Hormones regulate most aspects of human physiology and are generally divided into four groups: protein and peptides, monoamines, steroids, and free fatty acids (FAs). Unsaturated FAs, those with C–C double bonds, exert physiological functions through engagement with membrane receptors, many of which are G protein–coupled receptors (GPCRs). Omega-3 (ω-3) FAs, which are a main component of fish oil, bind to the receptor GPR120, which mediates insulin sensitization, stimulates glucagon-like peptide 1 (GLP-1) secretion, and controls adipogenesis and anti-inflammatory effects through coupling to distinct downstream effectors, including the guanine nucleotide–binding (G) proteins G s , G i , and G q and β-arrestins. The association of the p.R270H missense mutation of GPR120 in obesity suggests therapeutic potential for GPR120 in the treatment of metabolic diseases. RATIONALE How natural fatty acid hormones—which are amphipathic molecules, distinguished mainly by number and position of double bonds—interact with GPCRs such as GPR120 has been unclear. Both saturated and unsaturated FAs are able to activate GPR120, but only certain unsaturated FAs are beneficial for metabolism. It is therefore important to understand whether GPR120 can recognize selective double-bond decorations in FAs and, if so, translate binding to specific biological signaling pathways, including different G protein subtypes and arrestins. The lack of GPCR structures in complex with natural fatty acid hormones and downstream effectors has hampered our understanding of double-bond recognition, which is one challenge in developing therapeutics that might act through this receptor. RESULTS By profiling G protein and arrestin activities of GPR120 stimulated by saturated and unsaturated endogenous FAs or the synthetic compound TUG891, we found that these molecules exhibited different biased signaling properties. In particular, only the beneficial ω-3 FAs were able to activate G s signaling. We determined six cryo–electron microscopy (cryo-EM) structures of GPR120-G i /G iq with 9-hydroxystearic acid (9-HSA), linoleic acid (LA), oleic acid (OA), the natural agonist ω-3 eicosapentaenoic acid (EPA), and the synthetic agonist TUG891. All fatty acid hormones and TUG891 assumed an overall “L” configuration and were buried inside the seven-transmembrane (7TM) helix bundle of the receptor. Through structural and mutational analysis, biochemical characterization, and molecular simulations, we identified aromatic residues in the ligand pocket of GPR120 that specifically recognize the C–C double bonds present in unsaturated FAs through π:π interactions and translate this recognition into different signaling outcomes. A propagating path connects the double-bond recognition of GPR120 inside the ligand pocket of the cytoplasmic side, and common and distinct features of G s and G q coupling interfaces were investigated. We also analyzed the structural basis for selectivity of TUG891 toward GPR120 and a disease-associated single-nucleotide polymorphism of GPR120. The separation of TUG891 into two regions by a linker oxygen suggests that fragment-based drug design could be exploited for GPR120 ligand design. CONCLUSION Our cryo-EM structures reveal how fatty acid hormones bind the orthosteric site within the 7TM domain of GPCRs and how specific aromatic residues inside the ligand pocket recognize the C–C double bonds. We also investigated mechanisms underlying signaling bias of GPR120 in response to various ligands. This work will serve as a foundation for the development of molecules that bind and activate GPR120 for potential therapeutic uses as well as to better understand how ligand-induced conformational changes bias signaling outcomes in GPRCs. Fish oil membrane receptor GPR120 recognizes different unsaturated FAs and couples to distinct downstream effectors. The membrane receptor GPR120 specifically recognizes the C–C double bonds present in unsaturated FAs, such as those in the ω-3 FAs found in fish oil, through π:π interactions. The interaction patterns of different FAs or ligands inside of the ligand pocket of GPR120 are translated into different signaling outcomes via distinct propagating paths. GLUT4, glucose transporter member 4; cAMP, cyclic adenosine monophosphate; TAK1, transforming growth factor-β–activated kinase 1; NLRP3, NLR family pyrin domain containing 3.
    Type of Medium: Online Resource
    ISSN: 0036-8075 , 1095-9203
    RVK:
    RVK:
    Language: English
    Publisher: American Association for the Advancement of Science (AAAS)
    Publication Date: 2023
    detail.hit.zdb_id: 128410-1
    detail.hit.zdb_id: 2066996-3
    detail.hit.zdb_id: 2060783-0
    SSG: 11
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 12
    In: Science, American Association for the Advancement of Science (AAAS), Vol. 362, No. 6410 ( 2018-10-05), p. 80-83
    Abstract: Biodiversity experiments have shown that species loss reduces ecosystem functioning in grassland. To test whether this result can be extrapolated to forests, the main contributors to terrestrial primary productivity, requires large-scale experiments. We manipulated tree species richness by planting more than 150,000 trees in plots with 1 to 16 species. Simulating multiple extinction scenarios, we found that richness strongly increased stand-level productivity. After 8 years, 16-species mixtures had accumulated over twice the amount of carbon found in average monocultures and similar amounts as those of two commercial monocultures. Species richness effects were strongly associated with functional and phylogenetic diversity. A shrub addition treatment reduced tree productivity, but this reduction was smaller at high shrub species richness. Our results encourage multispecies afforestation strategies to restore biodiversity and mitigate climate change.
    Type of Medium: Online Resource
    ISSN: 0036-8075 , 1095-9203
    RVK:
    RVK:
    Language: English
    Publisher: American Association for the Advancement of Science (AAAS)
    Publication Date: 2018
    detail.hit.zdb_id: 128410-1
    detail.hit.zdb_id: 2066996-3
    detail.hit.zdb_id: 2060783-0
    SSG: 11
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 13
    Online Resource
    Online Resource
    American Association for the Advancement of Science (AAAS) ; 2017
    In:  Science Vol. 355, No. 6329 ( 2017-03-10)
    In: Science, American Association for the Advancement of Science (AAAS), Vol. 355, No. 6329 ( 2017-03-10)
    Abstract: We designed and synthesized a 976,067–base pair linear chromosome, synXII, based on native chromosome XII in Saccharomyces cerevisiae . SynXII was assembled using a two-step method, specified by successive megachunk integration and meiotic recombination-mediated assembly, producing a functional chromosome in S. cerevisiae. Minor growth defect “bugs” detected in synXII, caused by deletion of tRNA genes, were rescued by introducing an ectopic copy of a single tRNA gene. The ribosomal gene cluster (rDNA) on synXII was left intact during the assembly process and subsequently replaced by a modified rDNA unit used to regenerate rDNA at three distinct chromosomal locations. The signature sequences within rDNA, which can be used to determine species identity, were swapped to generate a Saccharomyces synXII strain that would be identified as Saccharomyces bayanus by standard DNA barcoding procedures.
    Type of Medium: Online Resource
    ISSN: 0036-8075 , 1095-9203
    RVK:
    RVK:
    Language: English
    Publisher: American Association for the Advancement of Science (AAAS)
    Publication Date: 2017
    detail.hit.zdb_id: 128410-1
    detail.hit.zdb_id: 2066996-3
    detail.hit.zdb_id: 2060783-0
    SSG: 11
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 14
    In: Brain, Oxford University Press (OUP), Vol. 146, No. 8 ( 2023-08-01), p. 3373-3391
    Abstract: GGC repeat expansion in the 5′ untranslated region (UTR) of NOTCH2NLC is associated with a broad spectrum of neurological disorders, especially neuronal intranuclear inclusion disease (NIID). Studies have found that GGC repeat expansion in NOTCH2NLC induces the formation of polyglycine (polyG)-containing protein, which is involved in the formation of neuronal intranuclear inclusions. However, the mechanism of neurotoxicity induced by NOTCH2NLC GGC repeats is unclear. Here, we used NIID patient-specific induced pluripotent stem cell (iPSC)-derived 3D cerebral organoids (3DCOs) and cellular models to investigate the pathophysiological mechanisms of NOTCH2NLC GGC repeat expansion. IPSC-derived 3DCOs and cellular models showed the deposition of polyG-containing intranuclear inclusions. The NOTCH2NLC GGC repeats could induce the upregulation of autophagic flux, enhance integrated stress response and activate EIF2α phosphorylation. Bulk RNA sequencing for iPSC-derived neurons and single-cell RNA sequencing (scRNA-seq) for iPSC-derived 3DCOs revealed that NOTCH2NLC GGC repeats may be associated with dysfunctions in ribosome biogenesis and translation. Moreover, NOTCH2NLC GGC repeats could induce the NPM1 nucleoplasm translocation, increase nucleolar stress, impair ribosome biogenesis and induce ribosomal RNA sequestration, suggesting dysfunction of membraneless organelles in the NIID cellular model. Dysfunctions in ribosome biogenesis and phosphorylated EIF2α and the resulting increase in the formation of G3BP1-positive stress granules may together lead to whole-cell translational inhibition, which may eventually cause cell death. Interestingly, scRNA-seq revealed that NOTCH2NLC GGC repeats may be associated with a significantly decreased proportion of immature neurons while 3DCOs were developing. Together, our results underscore the value of patient-specific iPSC-derived 3DCOs in investigating the mechanisms of polyG diseases, especially those caused by repeats in human-specific genes.
    Type of Medium: Online Resource
    ISSN: 0006-8950 , 1460-2156
    RVK:
    Language: English
    Publisher: Oxford University Press (OUP)
    Publication Date: 2023
    detail.hit.zdb_id: 1474117-9
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 15
    Online Resource
    Online Resource
    American Association for the Advancement of Science (AAAS) ; 2002
    In:  Science Vol. 296, No. 5565 ( 2002-04-05), p. 79-92
    In: Science, American Association for the Advancement of Science (AAAS), Vol. 296, No. 5565 ( 2002-04-05), p. 79-92
    Abstract: We have produced a draft sequence of the rice genome for the most widely cultivated subspecies in China, Oryza sativa L. ssp. indica , by whole-genome shotgun sequencing. The genome was 466 megabases in size, with an estimated 46,022 to 55,615 genes. Functional coverage in the assembled sequences was 92.0%. About 42.2% of the genome was in exact 20-nucleotide oligomer repeats, and most of the transposons were in the intergenic regions between genes. Although 80.6% of predicted Arabidopsis thaliana genes had a homolog in rice, only 49.4% of predicted rice genes had a homolog in A. thaliana . The large proportion of rice genes with no recognizable homologs is due to a gradient in the GC content of rice coding sequences.
    Type of Medium: Online Resource
    ISSN: 0036-8075 , 1095-9203
    RVK:
    RVK:
    Language: English
    Publisher: American Association for the Advancement of Science (AAAS)
    Publication Date: 2002
    detail.hit.zdb_id: 128410-1
    detail.hit.zdb_id: 2066996-3
    detail.hit.zdb_id: 2060783-0
    SSG: 11
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 16
    In: Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, Vol. 108, No. 29 ( 2011-07-19), p. 11983-11988
    Abstract: High-throughput sequencing technology enables population-level surveys of human genomic variation. Here, we examine the joint allele frequency distributions across continental human populations and present an approach for combining complementary aspects of whole-genome, low-coverage data and targeted high-coverage data. We apply this approach to data generated by the pilot phase of the Thousand Genomes Project, including whole-genome 2–4× coverage data for 179 samples from HapMap European, Asian, and African panels as well as high-coverage target sequencing of the exons of 800 genes from 697 individuals in seven populations. We use the site frequency spectra obtained from these data to infer demographic parameters for an Out-of-Africa model for populations of African, European, and Asian descent and to predict, by a jackknife-based approach, the amount of genetic diversity that will be discovered as sample sizes are increased. We predict that the number of discovered nonsynonymous coding variants will reach 100,000 in each population after ∼1,000 sequenced chromosomes per population, whereas ∼2,500 chromosomes will be needed for the same number of synonymous variants. Beyond this point, the number of segregating sites in the European and Asian panel populations is expected to overcome that of the African panel because of faster recent population growth. Overall, we find that the majority of human genomic variable sites are rare and exhibit little sharing among diverged populations. Our results emphasize that replication of disease association for specific rare genetic variants across diverged populations must overcome both reduced statistical power because of rarity and higher population divergence.
    Type of Medium: Online Resource
    ISSN: 0027-8424 , 1091-6490
    RVK:
    RVK:
    Language: English
    Publisher: Proceedings of the National Academy of Sciences
    Publication Date: 2011
    detail.hit.zdb_id: 209104-5
    detail.hit.zdb_id: 1461794-8
    SSG: 11
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 17
    In: Science, American Association for the Advancement of Science (AAAS), Vol. 370, No. 6521 ( 2020-12-04)
    Abstract: The COVID-19 pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is a grave threat to public health and the global economy. SARS-CoV-2 is closely related to the more lethal but less transmissible coronaviruses SARS-CoV-1 and Middle East respiratory syndrome coronavirus (MERS-CoV). Here, we have carried out comparative viral-human protein-protein interaction and viral protein localization analyses for all three viruses. Subsequent functional genetic screening identified host factors that functionally impinge on coronavirus proliferation, including Tom70, a mitochondrial chaperone protein that interacts with both SARS-CoV-1 and SARS-CoV-2 ORF9b, an interaction we structurally characterized using cryo–electron microscopy. Combining genetically validated host factors with both COVID-19 patient genetic data and medical billing records identified molecular mechanisms and potential drug treatments that merit further molecular and clinical study.
    Type of Medium: Online Resource
    ISSN: 0036-8075 , 1095-9203
    RVK:
    RVK:
    Language: English
    Publisher: American Association for the Advancement of Science (AAAS)
    Publication Date: 2020
    detail.hit.zdb_id: 128410-1
    detail.hit.zdb_id: 2066996-3
    detail.hit.zdb_id: 2060783-0
    SSG: 11
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 18
    Online Resource
    Online Resource
    American Association for the Advancement of Science (AAAS) ; 2009
    In:  Science Vol. 326, No. 5951 ( 2009-10-16), p. 433-436
    In: Science, American Association for the Advancement of Science (AAAS), Vol. 326, No. 5951 ( 2009-10-16), p. 433-436
    Abstract: A single–base pair resolution silkworm genetic variation map was constructed from 40 domesticated and wild silkworms, each sequenced to approximately threefold coverage, representing 99.88% of the genome. We identified ~16 million single-nucleotide polymorphisms, many indels, and structural variations. We find that the domesticated silkworms are clearly genetically differentiated from the wild ones, but they have maintained large levels of genetic variability, suggesting a short domestication event involving a large number of individuals. We also identified signals of selection at 354 candidate genes that may have been important during domestication, some of which have enriched expression in the silk gland, midgut, and testis. These data add to our understanding of the domestication processes and may have applications in devising pest control strategies and advancing the use of silkworms as efficient bioreactors.
    Type of Medium: Online Resource
    ISSN: 0036-8075 , 1095-9203
    RVK:
    RVK:
    Language: English
    Publisher: American Association for the Advancement of Science (AAAS)
    Publication Date: 2009
    detail.hit.zdb_id: 128410-1
    detail.hit.zdb_id: 2066996-3
    detail.hit.zdb_id: 2060783-0
    SSG: 11
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 19
    In: Nature Neuroscience, Springer Science and Business Media LLC, Vol. 17, No. 2 ( 2014-02), p. 215-222
    Type of Medium: Online Resource
    ISSN: 1097-6256 , 1546-1726
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2014
    detail.hit.zdb_id: 1494955-6
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 20
    In: Brain and Cognition, Elsevier BV, Vol. 71, No. 3 ( 2009-12), p. 354-361
    Type of Medium: Online Resource
    ISSN: 0278-2626
    Language: English
    Publisher: Elsevier BV
    Publication Date: 2009
    detail.hit.zdb_id: 1462261-0
    SSG: 5,2
    SSG: 7,11
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...