GLORIA

GEOMAR Library Ocean Research Information Access

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
  • 1
    Online-Ressource
    Online-Ressource
    Proceedings of the National Academy of Sciences ; 2015
    In:  Proceedings of the National Academy of Sciences Vol. 112, No. 30 ( 2015-07-28), p. 9305-9309
    In: Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, Vol. 112, No. 30 ( 2015-07-28), p. 9305-9309
    Kurzfassung: With decreasing temperature, liquids generally freeze into a solid state, losing entropy in the process. However, exceptions to this trend exist, such as quantum liquids, which may remain unfrozen down to absolute zero owing to strong quantum entanglement effects that stabilize a disordered state with zero entropy. Examples of such liquids include Bose−Einstein condensation of cold atoms, superconductivity, quantum Hall state of electron systems, and quantum spin liquid state in the frustrated magnets. Moreover, recent studies have clarified the possibility of another exotic quantum liquid state based on the spin–orbital entanglement in FeSc 2 S 4 . To confirm this exotic ground state, experiments based on single-crystalline samples are essential. However, no such single-crystal study has been reported to date. Here, we report, to our knowledge, the first single-crystal study on the spin–orbital liquid candidate, 6 H -Ba 3 CuSb 2 O 9 , and we have confirmed the absence of an orbital frozen state. In strongly correlated electron systems, orbital ordering usually appears at high temperatures in a process accompanied by a lattice deformation, called a static Jahn−Teller distortion. By combining synchrotron X-ray diffraction, electron spin resonance, Raman spectroscopy, and ultrasound measurements, we find that the static Jahn−Teller distortion is absent in the present material, which indicates that orbital ordering is suppressed down to the lowest temperatures measured. We discuss how such an unusual feature is realized with the help of spin degree of freedom, leading to a spin–orbital entangled quantum liquid state.
    Materialart: Online-Ressource
    ISSN: 0027-8424 , 1091-6490
    RVK:
    RVK:
    Sprache: Englisch
    Verlag: Proceedings of the National Academy of Sciences
    Publikationsdatum: 2015
    ZDB Id: 209104-5
    ZDB Id: 1461794-8
    SSG: 11
    SSG: 12
    Standort Signatur Einschränkungen Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...