GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Science, American Association for the Advancement of Science (AAAS), Vol. 367, No. 6484 ( 2020-03-20)
    Abstract: The cerebral cortex underlies our complex cognitive capabilities, yet little is known about the specific genetic loci that influence human cortical structure. To identify genetic variants that affect cortical structure, we conducted a genome-wide association meta-analysis of brain magnetic resonance imaging data from 51,665 individuals. We analyzed the surface area and average thickness of the whole cortex and 34 regions with known functional specializations. We identified 237 significant loci and found significant enrichment for loci influencing total surface area within regulatory elements that are active during prenatal cortical development, supporting the radial unit hypothesis. Loci that affect regional surface area cluster near genes in Wnt signaling pathways, which influence progenitor expansion and areal identity. Variation in cortical structure is genetically correlated with cognitive function, Parkinson’s disease, insomnia, depression, neuroticism, and attention deficit hyperactivity disorder.
    Type of Medium: Online Resource
    ISSN: 0036-8075 , 1095-9203
    RVK:
    RVK:
    Language: English
    Publisher: American Association for the Advancement of Science (AAAS)
    Publication Date: 2020
    detail.hit.zdb_id: 128410-1
    detail.hit.zdb_id: 2066996-3
    detail.hit.zdb_id: 2060783-0
    SSG: 11
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    American Association for the Advancement of Science (AAAS) ; 2017
    In:  Science Vol. 355, No. 6329 ( 2017-03-10)
    In: Science, American Association for the Advancement of Science (AAAS), Vol. 355, No. 6329 ( 2017-03-10)
    Abstract: We designed and synthesized a 976,067–base pair linear chromosome, synXII, based on native chromosome XII in Saccharomyces cerevisiae . SynXII was assembled using a two-step method, specified by successive megachunk integration and meiotic recombination-mediated assembly, producing a functional chromosome in S. cerevisiae. Minor growth defect “bugs” detected in synXII, caused by deletion of tRNA genes, were rescued by introducing an ectopic copy of a single tRNA gene. The ribosomal gene cluster (rDNA) on synXII was left intact during the assembly process and subsequently replaced by a modified rDNA unit used to regenerate rDNA at three distinct chromosomal locations. The signature sequences within rDNA, which can be used to determine species identity, were swapped to generate a Saccharomyces synXII strain that would be identified as Saccharomyces bayanus by standard DNA barcoding procedures.
    Type of Medium: Online Resource
    ISSN: 0036-8075 , 1095-9203
    RVK:
    RVK:
    Language: English
    Publisher: American Association for the Advancement of Science (AAAS)
    Publication Date: 2017
    detail.hit.zdb_id: 128410-1
    detail.hit.zdb_id: 2066996-3
    detail.hit.zdb_id: 2060783-0
    SSG: 11
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    Proceedings of the National Academy of Sciences ; 2020
    In:  Proceedings of the National Academy of Sciences Vol. 117, No. 37 ( 2020-09-15), p. 22910-22919
    In: Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, Vol. 117, No. 37 ( 2020-09-15), p. 22910-22919
    Abstract: Lymphocyte-based immunotherapy has emerged as a breakthrough in cancer therapy for both hematologic and solid malignancies. In a subpopulation of cancer patients, this powerful therapeutic modality converts malignancy to clinically manageable disease. However, the T cell- and chimeric antigen receptor T (CAR-T) cell-mediated antimetastatic activity, especially their impacts on microscopic metastatic lesions, has not yet been investigated. Here we report a living zebrafish model that allows us to visualize the metastatic cancer cell killing effect by tumor- infiltrating lymphocytes (TILs) and CAR-T cells in vivo at the single-cell level. In a freshly isolated primary human melanoma, specific TILs effectively eliminated metastatic cancer cells in the living body. This potent metastasis-eradicating effect was validated using a human lymphoma model with CAR-T cells. Furthermore, cancer-associated fibroblasts protected metastatic cancer cells from T cell-mediated killing. Our data provide an in vivo platform to validate antimetastatic effects by human T cell-mediated immunotherapy. This unique technology may serve as a precision medicine platform for assessing anticancer effects of cellular immunotherapy in vivo before administration to human cancer patients.
    Type of Medium: Online Resource
    ISSN: 0027-8424 , 1091-6490
    RVK:
    RVK:
    Language: English
    Publisher: Proceedings of the National Academy of Sciences
    Publication Date: 2020
    detail.hit.zdb_id: 209104-5
    detail.hit.zdb_id: 1461794-8
    SSG: 11
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Online Resource
    Online Resource
    Proceedings of the National Academy of Sciences ; 2019
    In:  Proceedings of the National Academy of Sciences Vol. 116, No. 19 ( 2019-05-07), p. 9543-9551
    In: Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, Vol. 116, No. 19 ( 2019-05-07), p. 9543-9551
    Abstract: Relapsed and refractory (R/R) multiple myeloma (MM) patients have very poor prognosis. Chimeric antigen receptor modified T (CAR T) cells is an emerging approach in treating hematopoietic malignancies. Here we conducted the clinical trial of a biepitope-targeting CAR T against B cell maturation antigen (BCMA) (LCAR-B38M) in 17 R/R MM cases. CAR T cells were i.v. infused after lymphodepleting chemotherapy. Two delivery methods, three infusions versus one infusion of the total CAR T dose, were tested in, respectively, 8 and 9 cases. No response differences were noted among the two delivery subgroups. Together, after CAR T cell infusion, 10 cases experienced a mild cytokine release syndrome (CRS), 6 had severe but manageable CRS, and 1 died of a very severe toxic reaction. The abundance of BCMA and cytogenetic marker del(17p) and the elevation of IL-6 were the key indicators for severe CRS. Among 17 cases, the overall response rate was 88.2%, with 13 achieving stringent complete response (sCR) and 2 reaching very good partial response (VGPR), while 1 was a nonresponder. With a median follow-up of 417 days, 8 patients remained in sCR or VGPR, whereas 6 relapsed after sCR and 1 had progressive disease (PD) after VGPR. CAR T cells were high in most cases with stable response but low in 6 out of 7 relapse/PD cases. Notably, positive anti-CAR antibody constituted a high-risk factor for relapse/PD, and patients who received prior autologous hematopoietic stem cell transplantation had more durable response. Thus, biepitopic CAR T against BCMA represents a promising therapy for R/R MM, while most adverse effects are clinically manageable.
    Type of Medium: Online Resource
    ISSN: 0027-8424 , 1091-6490
    RVK:
    RVK:
    Language: English
    Publisher: Proceedings of the National Academy of Sciences
    Publication Date: 2019
    detail.hit.zdb_id: 209104-5
    detail.hit.zdb_id: 1461794-8
    SSG: 11
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Online Resource
    Online Resource
    American Association for the Advancement of Science (AAAS) ; 2020
    In:  Science Vol. 369, No. 6499 ( 2020-07-03), p. 77-81
    In: Science, American Association for the Advancement of Science (AAAS), Vol. 369, No. 6499 ( 2020-07-03), p. 77-81
    Abstract: The coronavirus disease 2019 (COVID-19) pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has resulted in an unprecedented public health crisis. Because of the novelty of the virus, there are currently no SARS-CoV-2–specific treatments or vaccines available. Therefore, rapid development of effective vaccines against SARS-CoV-2 are urgently needed. Here, we developed a pilot-scale production of PiCoVacc, a purified inactivated SARS-CoV-2 virus vaccine candidate, which induced SARS-CoV-2–specific neutralizing antibodies in mice, rats, and nonhuman primates. These antibodies neutralized 10 representative SARS-CoV-2 strains, suggesting a possible broader neutralizing ability against other strains. Three immunizations using two different doses, 3 or 6 micrograms per dose, provided partial or complete protection in macaques against SARS-CoV-2 challenge, respectively, without observable antibody-dependent enhancement of infection. These data support the clinical development and testing of PiCoVacc for use in humans.
    Type of Medium: Online Resource
    ISSN: 0036-8075 , 1095-9203
    RVK:
    RVK:
    Language: English
    Publisher: American Association for the Advancement of Science (AAAS)
    Publication Date: 2020
    detail.hit.zdb_id: 128410-1
    detail.hit.zdb_id: 2066996-3
    detail.hit.zdb_id: 2060783-0
    SSG: 11
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Online Resource
    Online Resource
    Proceedings of the National Academy of Sciences ; 2018
    In:  Proceedings of the National Academy of Sciences Vol. 115, No. 2 ( 2018-01-09), p. 373-378
    In: Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, Vol. 115, No. 2 ( 2018-01-09), p. 373-378
    Abstract: T-cell acute lymphoblastic leukemia (T-ALL) is a clonal malignancy of immature T cells. Recently, the next-generation sequencing approach has allowed systematic identification of molecular features in pediatric T-ALL. Here, by performing RNA-sequencing and other genomewide analysis, we investigated the genomic landscape in 61 adult and 69 pediatric T-ALL cases. Thirty-six distinct gene fusion transcripts were identified, with SET-NUP214 being highly related to adult cases. Among 18 previously unknown fusions, ZBTB16-ABL1 , TRA-SALL2 , and involvement of NKX2-1 were recurrent events. ZBTB16-ABL1 functioned as a leukemogenic driver and responded to the effect of tyrosine kinase inhibitors. Among 48 genes with mutation rates 〉 3%, 6 were newly found in T-ALL. An aberrantly overexpressed short mRNA transcript of the SLC17A9 gene was revealed in most cases with overexpressed TAL1 , which predicted a poor prognosis in the adult group. Up-regulation of HOXA , MEF2C , and LYL1 was often present in adult cases, while TAL1 overexpression was detected mainly in the pediatric group. Although most gene fusions were mutually exclusive, they coexisted with gene mutations. These genetic abnormalities were correlated with deregulated gene expression markers in three subgroups. This study may further enrich the current knowledge of T-ALL molecular pathogenesis.
    Type of Medium: Online Resource
    ISSN: 0027-8424 , 1091-6490
    RVK:
    RVK:
    Language: English
    Publisher: Proceedings of the National Academy of Sciences
    Publication Date: 2018
    detail.hit.zdb_id: 209104-5
    detail.hit.zdb_id: 1461794-8
    SSG: 11
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Online Resource
    Online Resource
    Proceedings of the National Academy of Sciences ; 2013
    In:  Proceedings of the National Academy of Sciences Vol. 110, No. 2 ( 2013-01-08), p. 577-582
    In: Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, Vol. 110, No. 2 ( 2013-01-08), p. 577-582
    Abstract: The genetic diversity of Yersinia pestis , the etiologic agent of plague, is extremely limited because of its recent origin coupled with a slow clock rate. Here we identified 2,326 SNPs from 133 genomes of Y. pestis strains that were isolated in China and elsewhere. These SNPs define the genealogy of Y. pestis since its most recent common ancestor. All but 28 of these SNPs represented mutations that happened only once within the genealogy, and they were distributed essentially at random among individual genes. Only seven genes contained a significant excess of nonsynonymous SNP, suggesting that the fixation of SNPs mainly arises via neutral processes, such as genetic drift, rather than Darwinian selection. However, the rate of fixation varies dramatically over the genealogy: the number of SNPs accumulated by different lineages was highly variable and the genealogy contains multiple polytomies, one of which resulted in four branches near the time of the Black Death. We suggest that demographic changes can affect the speed of evolution in epidemic pathogens even in the absence of natural selection, and hypothesize that neutral SNPs are fixed rapidly during intermittent epidemics and outbreaks.
    Type of Medium: Online Resource
    ISSN: 0027-8424 , 1091-6490
    RVK:
    RVK:
    Language: English
    Publisher: Proceedings of the National Academy of Sciences
    Publication Date: 2013
    detail.hit.zdb_id: 209104-5
    detail.hit.zdb_id: 1461794-8
    SSG: 11
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Online Resource
    Online Resource
    Proceedings of the National Academy of Sciences ; 2014
    In:  Proceedings of the National Academy of Sciences Vol. 111, No. 20 ( 2014-05-20), p. 7415-7420
    In: Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, Vol. 111, No. 20 ( 2014-05-20), p. 7415-7420
    Abstract: Massively parallel sequencing (MPS) of cell-free fetal DNA from maternal plasma has revolutionized our ability to perform noninvasive prenatal diagnosis. This approach avoids the risk of fetal loss associated with more invasive diagnostic procedures. The present study developed an effective method for noninvasive prenatal diagnosis of common chromosomal aneuploidies using a benchtop semiconductor sequencing platform (SSP), which relies on the MPS platform but offers advantages over existing noninvasive screening techniques. A total of 2,275 pregnant subjects was included in the study; of these, 515 subjects who had full karyotyping results were used in a retrospective analysis, and 1,760 subjects without karyotyping were analyzed in a prospective study. In the retrospective study, all 55 fetal trisomy 21 cases were identified using the SSP with a sensitivity and specificity of 99.94% and 99.46%, respectively. The SSP also detected 16 trisomy 18 cases with 100% sensitivity and 99.24% specificity and 3 trisomy 13 cases with 100% sensitivity and 100% specificity. Furthermore, 15 fetuses with sex chromosome aneuploidies (10 45,X, 2 47,XYY, 2 47,XXX, and 1 47,XXY) were detected. In the prospective study, nine fetuses with trisomy 21, three with trisomy 18, three with trisomy 13, and one with 45,X were detected. To our knowledge, this is the first large-scale clinical study to systematically identify chromosomal aneuploidies based on cell-free fetal DNA using the SSP and provides an effective strategy for large-scale noninvasive screening for chromosomal aneuploidies in a clinical setting.
    Type of Medium: Online Resource
    ISSN: 0027-8424 , 1091-6490
    RVK:
    RVK:
    Language: English
    Publisher: Proceedings of the National Academy of Sciences
    Publication Date: 2014
    detail.hit.zdb_id: 209104-5
    detail.hit.zdb_id: 1461794-8
    SSG: 11
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Online Resource
    Online Resource
    Proceedings of the National Academy of Sciences ; 2020
    In:  Proceedings of the National Academy of Sciences Vol. 117, No. 25 ( 2020-06-23), p. 14395-14404
    In: Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, Vol. 117, No. 25 ( 2020-06-23), p. 14395-14404
    Abstract: Retinoic acid-inducible gene I (RIG-I) is up-regulated during granulocytic differentiation of acute promyelocytic leukemia (APL) cells induced by all- trans retinoic acid (ATRA). It has been reported that RIG-I recognizes virus-specific 5′-ppp-double-stranded RNA (dsRNA) and activates the type I interferons signaling pathways in innate immunity. However, the functions of RIG-I in hematopoiesis remain unclear, especially regarding its possible interaction with endogenous RNAs and the associated pathways that could contribute to the cellular differentiation and maturation. Herein, we identified a number of RIG-I–binding endogenous RNAs in APL cells following ATRA treatment, including the tripartite motif-containing protein 25 ( TRIM25 ) messenger RNA (mRNA). TRIM25 encodes the protein known as an E3 ligase for ubiquitin/interferon (IFN)-induced 15-kDa protein (ISG15) that is involved in RIG-I–mediated antiviral signaling. We show that RIG-I could bind TRIM25 mRNA via its helicase domain and C-terminal regulatory domain, enhancing the stability of TRIM25 transcripts. RIG-I could increase the transcriptional expression of TRIM25 by caspase recruitment domain (CARD) domain through an IFN-stimulated response element. In addition, RIG-I activated other key genes in the ISGylation pathway by activating signal transducer and activator of transcription 1 (STAT1), including the modifier ISG15 and several enzymes responsible for the conjugation of ISG15 to protein substrates. RIG-I cooperated with STAT1/2 and interferon regulatory factor 1 (IRF1) to promote the activation of the ISGylation pathway. The integrity of ISGylation in ATRA or RIG-I–induced cell differentiation was essential given that knockdown of TRIM25 or ISG15 resulted in significant inhibition of this process. Our results provide insight into the role of the RIG-I-TRIM25-ISGylation axis in myeloid differentiation.
    Type of Medium: Online Resource
    ISSN: 0027-8424 , 1091-6490
    RVK:
    RVK:
    Language: English
    Publisher: Proceedings of the National Academy of Sciences
    Publication Date: 2020
    detail.hit.zdb_id: 209104-5
    detail.hit.zdb_id: 1461794-8
    SSG: 11
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Online Resource
    Online Resource
    Proceedings of the National Academy of Sciences ; 2005
    In:  Proceedings of the National Academy of Sciences Vol. 102, No. 7 ( 2005-02-15), p. 2430-2435
    In: Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, Vol. 102, No. 7 ( 2005-02-15), p. 2430-2435
    Abstract: The genomic sequences of severe acute respiratory syndrome coronaviruses from human and palm civet of the 2003/2004 outbreak in the city of Guangzhou, China, were nearly identical. Phylogenetic analysis suggested an independent viral invasion from animal to human in this new episode. Combining all existing data but excluding singletons, we identified 202 single-nucleotide variations. Among them, 17 are polymorphic in palm civets only. The ratio of nonsynonymous/synonymous nucleotide substitution in palm civets collected 1 yr apart from different geographic locations is very high, suggesting a rapid evolving process of viral proteins in civet as well, much like their adaptation in the human host in the early 2002–2003 epidemic. Major genetic variations in some critical genes, particularly the Spike gene, seemed essential for the transition from animal-to-human transmission to human-to-human transmission, which eventually caused the first severe acute respiratory syndrome outbreak of 2002/2003.
    Type of Medium: Online Resource
    ISSN: 0027-8424 , 1091-6490
    RVK:
    RVK:
    Language: English
    Publisher: Proceedings of the National Academy of Sciences
    Publication Date: 2005
    detail.hit.zdb_id: 209104-5
    detail.hit.zdb_id: 1461794-8
    SSG: 11
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...