GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    Proceedings of the National Academy of Sciences ; 2020
    In:  Proceedings of the National Academy of Sciences Vol. 117, No. 52 ( 2020-12-29), p. 32989-32995
    In: Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, Vol. 117, No. 52 ( 2020-12-29), p. 32989-32995
    Abstract: Tibet’s ancient topography and its role in climatic and biotic evolution remain speculative due to a paucity of quantitative surface-height measurements through time and space, and sparse fossil records. However, newly discovered fossils from a present elevation of ∼4,850 m in central Tibet improve substantially our knowledge of the ancient Tibetan environment. The 70 plant fossil taxa so far recovered include the first occurrences of several modern Asian lineages and represent a Middle Eocene (∼47 Mya) humid subtropical ecosystem. The fossils not only record the diverse composition of the ancient Tibetan biota, but also allow us to constrain the Middle Eocene land surface height in central Tibet to ∼1,500 ± 900 m, and quantify the prevailing thermal and hydrological regime. This “Shangri-La”–like ecosystem experienced monsoon seasonality with a mean annual temperature of ∼19 °C, and frosts were rare. It contained few Gondwanan taxa, yet was compositionally similar to contemporaneous floras in both North America and Europe. Our discovery quantifies a key part of Tibetan Paleogene topography and climate, and highlights the importance of Tibet in regard to the origin of modern Asian plant species and the evolution of global biodiversity.
    Type of Medium: Online Resource
    ISSN: 0027-8424 , 1091-6490
    RVK:
    RVK:
    Language: English
    Publisher: Proceedings of the National Academy of Sciences
    Publication Date: 2020
    detail.hit.zdb_id: 209104-5
    detail.hit.zdb_id: 1461794-8
    SSG: 11
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    American Association for the Advancement of Science (AAAS) ; 2022
    In:  Science Vol. 376, No. 6599 ( 2022-06-17), p. 1293-1300
    In: Science, American Association for the Advancement of Science (AAAS), Vol. 376, No. 6599 ( 2022-06-17), p. 1293-1300
    Abstract: A tag team of protein degradation protects rice plants from excess heat.
    Type of Medium: Online Resource
    ISSN: 0036-8075 , 1095-9203
    RVK:
    RVK:
    Language: English
    Publisher: American Association for the Advancement of Science (AAAS)
    Publication Date: 2022
    detail.hit.zdb_id: 128410-1
    detail.hit.zdb_id: 2066996-3
    detail.hit.zdb_id: 2060783-0
    SSG: 11
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    American Association for the Advancement of Science (AAAS) ; 2019
    In:  Science Vol. 363, No. 6428 ( 2019-02-15), p. 723-727
    In: Science, American Association for the Advancement of Science (AAAS), Vol. 363, No. 6428 ( 2019-02-15), p. 723-727
    Abstract: Ceramic aerogels are attractive for thermal insulation but plagued by poor mechanical stability and degradation under thermal shock. In this study, we designed and synthesized hyperbolic architectured ceramic aerogels with nanolayered double-pane walls with a negative Poisson’s ratio (−0.25) and a negative linear thermal expansion coefficient (−1.8 × 10 −6 per °C). Our aerogels display robust mechanical and thermal stability and feature ultralow densities down to ~0.1 milligram per cubic centimeter, superelasticity up to 95%, and near-zero strength loss after sharp thermal shocks (275°C per second) or intense thermal stress at 1400°C, as well as ultralow thermal conductivity in vacuum [~2.4 milliwatts per meter-kelvin (mW/m·K)] and in air (~20 mW/m·K). This robust material system is ideal for thermal superinsulation under extreme conditions, such as those encountered by spacecraft.
    Type of Medium: Online Resource
    ISSN: 0036-8075 , 1095-9203
    RVK:
    RVK:
    Language: English
    Publisher: American Association for the Advancement of Science (AAAS)
    Publication Date: 2019
    detail.hit.zdb_id: 128410-1
    detail.hit.zdb_id: 2066996-3
    detail.hit.zdb_id: 2060783-0
    SSG: 11
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Online Resource
    Online Resource
    Proceedings of the National Academy of Sciences ; 2018
    In:  Proceedings of the National Academy of Sciences Vol. 115, No. 45 ( 2018-11-06), p. 11567-11572
    In: Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, Vol. 115, No. 45 ( 2018-11-06), p. 11567-11572
    Abstract: Whole-exome sequencing has been successful in identifying genetic factors contributing to familial or sporadic Parkinson’s disease (PD). However, this approach has not been applied to explore the impact of de novo mutations on PD pathogenesis. Here, we sequenced the exomes of 39 early onset patients, their parents, and 20 unaffected siblings to investigate the effects of de novo mutations on PD. We identified 12 genes with de novo mutations ( MAD1L1 , NUP98 , PPP2CB , PKMYT1 , TRIM24 , CEP131 , CTTNBP2 , NUS1 , SMPD3 , MGRN1 , IFI35 , and RUSC2 ), which could be functionally relevant to PD pathogenesis. Further analyses of two independent case-control cohorts (1,852 patients and 1,565 controls in one cohort and 3,237 patients and 2,858 controls in the other) revealed that NUS1 harbors significantly more rare nonsynonymous variants ( P = 1.01E-5, odds ratio = 11.3) in PD patients than in controls. Functional studies in Drosophila demonstrated that the loss of NUS1 could reduce the climbing ability, dopamine level, and number of dopaminergic neurons in 30-day-old flies and could induce apoptosis in fly brain. Together, our data suggest that de novo mutations could contribute to early onset PD pathogenesis and identify NUS1 as a candidate gene for PD.
    Type of Medium: Online Resource
    ISSN: 0027-8424 , 1091-6490
    RVK:
    RVK:
    Language: English
    Publisher: Proceedings of the National Academy of Sciences
    Publication Date: 2018
    detail.hit.zdb_id: 209104-5
    detail.hit.zdb_id: 1461794-8
    SSG: 11
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    In: Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, Vol. 117, No. 5 ( 2020-02-04), p. 2560-2569
    Abstract: De novo mutations (DNMs), or mutations that appear in an individual despite not being seen in their parents, are an important source of genetic variation whose impact is relevant to studies of human evolution, genetics, and disease. Utilizing high-coverage whole-genome sequencing data as part of the Trans-Omics for Precision Medicine (TOPMed) Program, we called 93,325 single-nucleotide DNMs across 1,465 trios from an array of diverse human populations, and used them to directly estimate and analyze DNM counts, rates, and spectra. We find a significant positive correlation between local recombination rate and local DNM rate, and that DNM rate explains a substantial portion (8.98 to 34.92%, depending on the model) of the genome-wide variation in population-level genetic variation from 41K unrelated TOPMed samples. Genome-wide heterozygosity does correlate with DNM rate, but only explains 〈 1% of variation. While we are underpowered to see small differences, we do not find significant differences in DNM rate between individuals of European, African, and Latino ancestry, nor across ancestrally distinct segments within admixed individuals. However, we did find significantly fewer DNMs in Amish individuals, even when compared with other Europeans, and even after accounting for parental age and sequencing center. Specifically, we found significant reductions in the number of C→A and T→C mutations in the Amish, which seem to underpin their overall reduction in DNMs. Finally, we calculated near-zero estimates of narrow sense heritability ( h 2 ), which suggest that variation in DNM rate is significantly shaped by nonadditive genetic effects and the environment.
    Type of Medium: Online Resource
    ISSN: 0027-8424 , 1091-6490
    RVK:
    RVK:
    Language: English
    Publisher: Proceedings of the National Academy of Sciences
    Publication Date: 2020
    detail.hit.zdb_id: 209104-5
    detail.hit.zdb_id: 1461794-8
    SSG: 11
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Online Resource
    Online Resource
    Proceedings of the National Academy of Sciences ; 2019
    In:  Proceedings of the National Academy of Sciences Vol. 116, No. 18 ( 2019-04-30), p. 9078-9083
    In: Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, Vol. 116, No. 18 ( 2019-04-30), p. 9078-9083
    Abstract: Major depressive disorder (MDD) is common and disabling, but its neuropathophysiology remains unclear. Most studies of functional brain networks in MDD have had limited statistical power and data analysis approaches have varied widely. The REST-meta-MDD Project of resting-state fMRI (R-fMRI) addresses these issues. Twenty-five research groups in China established the REST-meta-MDD Consortium by contributing R-fMRI data from 1,300 patients with MDD and 1,128 normal controls (NCs). Data were preprocessed locally with a standardized protocol before aggregated group analyses. We focused on functional connectivity (FC) within the default mode network (DMN), frequently reported to be increased in MDD. Instead, we found decreased DMN FC when we compared 848 patients with MDD to 794 NCs from 17 sites after data exclusion. We found FC reduction only in recurrent MDD, not in first-episode drug-naïve MDD. Decreased DMN FC was associated with medication usage but not with MDD duration. DMN FC was also positively related to symptom severity but only in recurrent MDD. Exploratory analyses also revealed alterations in FC of visual, sensory-motor, and dorsal attention networks in MDD. We confirmed the key role of DMN in MDD but found reduced rather than increased FC within the DMN. Future studies should test whether decreased DMN FC mediates response to treatment. All R-fMRI indices of data contributed by the REST-meta-MDD consortium are being shared publicly via the R-fMRI Maps Project.
    Type of Medium: Online Resource
    ISSN: 0027-8424 , 1091-6490
    RVK:
    RVK:
    Language: English
    Publisher: Proceedings of the National Academy of Sciences
    Publication Date: 2019
    detail.hit.zdb_id: 209104-5
    detail.hit.zdb_id: 1461794-8
    SSG: 11
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Online Resource
    Online Resource
    American Association for the Advancement of Science (AAAS) ; 2022
    In:  Science Vol. 377, No. 6607 ( 2022-08-12)
    In: Science, American Association for the Advancement of Science (AAAS), Vol. 377, No. 6607 ( 2022-08-12)
    Abstract: In mammals, spermiogenesis (postmeiotic male germ cell differentiation) is a highly orchestrated developmental process controlled by a group of genes collectively referred to as spermiogenic genes. Because nuclear condensation during spermiogenesis gradually halts transcription, spermiogenic genes are transcribed in advance during the earlier stages of male germ development and stored as translationally inert messenger ribonucleoproteins (mRNPs) in developing spermatids until they are needed for translation. Such inert mRNPs are usually organized into mRNP granules called germ granules, which serve as storage facilities for nontranslating mRNAs in various types of germ cells. However, little is known about how those mRNAs stored in inert mRNPs are activated during late spermiogenesis. RATIONALE To understand how translationally inert mRNAs are activated during spermiogenesis, we screened potential translational regulators by proteomic analysis of polysomes from mouse testes. FXR1, a member of the fragile X–related (FXR) protein family, stood out from the screen as a translational regulator in late spermatids. By performing eCLIP and polysome profiling, in combination with generating a germline-specific Fxr1 knockout ( Fxr1 cko ) mouse model, we investigated whether FXR1 is required for translation activation in late spermatids. To decipher the mechanism underlying FXR1-mediated translation regulation, we identified the potential cofactor(s) of FXR1 in mouse testes using immunoprecipitation coupled with mass spectrometry. We observed the formation of FXR1 granules through liquid-liquid phase separation (LLPS), which recruits translation factors in late spermatids, and used the TRICK (translating RNA imaging by coat protein knock-off) reporter system to determine whether FXR1 LLPS is required for target translation in cultured cells. To further investigate whether FXR1 LLPS is critical for target translation in mouse spermatids, we ectopically expressed wild-type FXR1, LLPS-deficient FXR1 L351P mutants, or LLPS-restored FXR1 L351P -IDR FUS mutants in Fxr1 cko testes using lentiviral testis transduction. Finally, by generating germline-specific Fxr1 L351P knock-in mice, we determined whether FXR1 LLPS is indispensable to translation activation in late spermatids, spermiogenesis, and male fertility in mice. RESULTS We found that FXR1 was much more enriched in polysomes from 35-day postpartum (dpp) testes relative to 25-dpp testes, suggesting a role for FXR1 in translation activation in late spermatids. We identified a group of 770 mRNAs as being likely direct FXR1-activated targets, and demonstrated that germline-specific Fxr1 deletion in mice markedly reduced target translation in late spermatids. Consistent with FXR1 functioning in translation activation in late spermatids, Fxr1 cko male mice were infertile and displayed spermatogenic failure at late spermiogenesis. Interestingly, we observed a pronounced up-regulation of FXR1 and the formation of abundant, distinct condensates in late spermatids, suggesting concentration-dependent LLPS. Mechanistic studies revealed that FXR1 undergoes LLPS to form condensates that assemble target mRNAs as mRNP granules and then recruit translational machinery to activate the stored mRNAs. Consistently, ectopic expression of wild-type FXR1 or FXR1 L351P -IDR FUS , but not FXR1 L351P , activated target translation in cultured cells and successfully rescued target translation in late spermatids and spermiogenesis in Fxr1 cko mice. Furthermore, Fxr1 L351P knock-in mutant mice highly phenocopy Fxr1 cko mice, directly supporting the indispensability of FXR1 LLPS to target translation in late spermatids, spermiogenesis, and male fertility in mice. CONCLUSION Our findings demonstrate that FXR1 is an essential translation activator that instructs spermiogenesis in mice and unveil a key contribution of FXR1 LLPS to the translation activation of stored mRNAs in mouse spermatid and male fertility in mice. In addition, our study pinpoints the importance of LLPS in a developmental process in vivo. FXR1-containing granules mediate translation activation in late spermatids. During late spermiogenesis, elevated FXR1 undergoes LLPS to assemble target mRNAs as FXR1 mRNP granules that recruit translational machinery by interacting with the eukaryotic translation initiation factor 4 gamma 3 (EIF4G3) to activate the stored mRNAs in late spermatids. These phase-separated FXR1 granules drive a large translation program to instruct spermatid development and sperm production in mice.
    Type of Medium: Online Resource
    ISSN: 0036-8075 , 1095-9203
    RVK:
    RVK:
    Language: English
    Publisher: American Association for the Advancement of Science (AAAS)
    Publication Date: 2022
    detail.hit.zdb_id: 128410-1
    detail.hit.zdb_id: 2066996-3
    detail.hit.zdb_id: 2060783-0
    SSG: 11
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    In: Science, American Association for the Advancement of Science (AAAS), Vol. 379, No. 6637 ( 2023-03-17)
    Abstract: Autoimmune diseases such as ankylosing spondylitis (AS) can be caused by emerging neoantigens that break immune tolerance in humans. Posttranslational modifications (PTMs) have been shown to be a critical mechanism that alters protein structure and function to generate neoantigens and induce subsequent autoimmune responses. Previous studies have confirmed that citrulline-modified peptides are a critical source of neoantigens in rheumatoid arthritis. However, the molecular mechanisms underlying neoantigen formation and pathogenic autoreactive responses for AS are largely unknown. There is an urgent need to develop a systematic approach to profiling the possible PTMs in patients with AS and identifying AS-associated PTMs responsible for autoreactive neoantigen production to better understand the etiology of autoimmune diseases. RATIONALE AS has been suggested to be an autoimmune disease because of its clear correlation with certain major histocompatibility complex (MHC) alleles, including HLA-B27. Neoantigens have been hypothesized to induce an aberrant immune response, leading to pathogenic autoreactive T cell responses and autoantibody generation in AS. Here, we developed a systematic open search approach to identify any possible amino acid residues and derivatives in the proteins that are different from the genomic coding sequences. We then applied this information to identify AS-related neoantigens with PTMs within a possible pool of PTM autoantigens and elucidate the pathogenesis of AS. RESULTS An open search approach was applied to identify any possible amino acid derivatives across the proteome of patients with AS. This approach generated a large set of noncoded amino acids representing the mass differences between the coded amino acids and actual residues. Among these, an amino acid derivative with a delta mass of 72.021 showed the greatest increase in patients with AS and resulted from a PTM called cysteine carboxyethylation. In vitro and in vivo experiments demonstrated that carboxyethylation at a cysteine residue of integrin αIIb [ITGA2B (CD41)] was catalyzed by cystathionine beta synthase (CBS) in a process that required 3-hydroxypropionic acid (3-HPA), a metabolite commonly released from gut microbes. Cysteine carboxyethylation induced the lysosomal degradation of ITGA2B and produced neoantigens that triggered MHC-II–dependent CD4 + T cell responses. Fluorescence polarization and enzyme-linked immunosorbent assay (ELISA) demonstrated that the identified carboxyethylated peptide (ITGA2B-ceC96) specifically interacted with HLA-DRA*01/HLA-DRB1*04 and was associated with autoantibody production and T cell responses in HLA-DRB1*04 patients. Additional in vitro assays showed that the neoantigen ITGA2B-ceC96 correlated with 3-HPA levels but was independent of CBS expression. HLA-DRB1 haplotype, the carboxyethylated peptide, specific autoantibodies, and 3-HPA levels in patients with AS all correlated with one another. 3-HPA–treated and ITGA2B-ceC96–immunized HLA-DR4 transgenic mice developed colitis and vertebral bone erosion. Thus, cysteine carboxyethylation induced by the metabolite 3-HPA generates a neoantigen that appears to be critical for autoimmune responses in patients with AS. CONCLUSION Cysteine carboxyethylation is an in vivo protein modification induced by the metabolite 3-HPA, which is commonly released from gut microbes. Carboxyethylated ITGA2B then induces autoantibody production and autoimmune response in AS. Our work provides a systematic workflow to identify differentially modified proteins that are important for neoantigen production in immune disorders. This approach furthers our understanding of AS pathogenesis and may aid in the development of neoantigen-based diagnosis and treatment for AS and other autoimmune diseases. Metabolite-induced cysteine carboxyethylation provokes HLA-restricted autoimmune responses in ankylosing spondylitis. 3-HPA, which is commonly obtained from food and gut microbes, induces carboxyethylation of cysteine residues in integrin αIIb (ITGA2B). Cysteine carboxyethylation requires CBS, and carboxyethylated ITGA2B (ITGA2B-ceC96) peptides are recruited to the HLA-DR4 complex and thereby stimulate CD4 + T cell responses closely related to AS.
    Type of Medium: Online Resource
    ISSN: 0036-8075 , 1095-9203
    RVK:
    RVK:
    Language: English
    Publisher: American Association for the Advancement of Science (AAAS)
    Publication Date: 2023
    detail.hit.zdb_id: 128410-1
    detail.hit.zdb_id: 2066996-3
    detail.hit.zdb_id: 2060783-0
    SSG: 11
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Online Resource
    Online Resource
    American Association for the Advancement of Science (AAAS) ; 2017
    In:  Science Vol. 355, No. 6329 ( 2017-03-10)
    In: Science, American Association for the Advancement of Science (AAAS), Vol. 355, No. 6329 ( 2017-03-10)
    Abstract: Perfect matching of an assembled physical sequence to a specified designed sequence is crucial to verify design principles in genome synthesis. We designed and de novo synthesized 536,024–base pair chromosome synV in the “Build-A-Genome China” course. We corrected an initial isolate of synV to perfectly match the designed sequence using integrative cotransformation and clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9)–mediated editing in 22 steps; synV strains exhibit high fitness under a variety of culture conditions, compared with that of wild-type V strains. A ring synV derivative was constructed, which is fully functional in Saccharomyces cerevisiae under all conditions tested and exhibits lower spore viability during meiosis. Ring synV chromosome can extends Sc2.0 design principles and provides a model with which to study genomic rearrangement, ring chromosome evolution, and human ring chromosome disorders.
    Type of Medium: Online Resource
    ISSN: 0036-8075 , 1095-9203
    RVK:
    RVK:
    Language: English
    Publisher: American Association for the Advancement of Science (AAAS)
    Publication Date: 2017
    detail.hit.zdb_id: 128410-1
    detail.hit.zdb_id: 2066996-3
    detail.hit.zdb_id: 2060783-0
    SSG: 11
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    In: Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, Vol. 109, No. 7 ( 2012-02-14), p. 2521-2526
    Abstract: The boronic acid dipeptide bortezomib inhibits the chymotrypsin-like activity of the 26S proteasome and shows significant therapeutic efficacy in multiple myeloma. However, recent studies suggest that bortezomib may have more complex mechanisms of action in treating cancer. We report here that the endocytosis and lysosomal degradation of the receptor tyrosine kinase C-KIT are required for bortezomib- but not tyrosine kinase inhibitor imatinib-caused apoptosis of t (8;21) leukemia and gastrointestinal stromal tumor cells, suggesting that C-KIT may recruit an apoptosis initiator. We show that C-KIT binds and phosphorylates heat shock protein 90β (Hsp90β), which sequestrates apoptotic protease activating factor 1 (Apaf-1). Bortezomib dephosphorylates pHsp90β and releases Apaf-1. Although the activated caspase-3 is not sufficient to cause marked apoptosis, it cleaves the t (8;21) generated acute myeloid leukemia 1-eight twenty one (AML1-ETO) and AML1-ETO9a fusion proteins, with production of cleavage fragments that perturb the functions of the parental oncoproteins and further contribute to apoptosis. Notably, bortezomib exerts potent therapeutic efficacy in mice bearing AML1-ETO9a–driven leukemia. These data show that C-KIT-pHsp90β-Apaf-1 cascade is critical for some malignant cells to evade apoptosis, and the clinical therapeutic potentials of bortezomib in C-KIT–driven neoplasms should be further explored.
    Type of Medium: Online Resource
    ISSN: 0027-8424 , 1091-6490
    RVK:
    RVK:
    Language: English
    Publisher: Proceedings of the National Academy of Sciences
    Publication Date: 2012
    detail.hit.zdb_id: 209104-5
    detail.hit.zdb_id: 1461794-8
    SSG: 11
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...