GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, Vol. 111, No. 14 ( 2014-04-08), p. 5289-5294
    Abstract: Naturally occurring regulatory T (Treg) cells, which specifically express the transcription factor forkhead box P3 (Foxp3), are engaged in the maintenance of immunological self-tolerance and homeostasis. By transcriptional start site cluster analysis, we assessed here how genome-wide patterns of DNA methylation or Foxp3 binding sites were associated with Treg-specific gene expression. We found that Treg-specific DNA hypomethylated regions were closely associated with Treg up-regulated transcriptional start site clusters, whereas Foxp3 binding regions had no significant correlation with either up- or down-regulated clusters in nonactivated Treg cells. However, in activated Treg cells, Foxp3 binding regions showed a strong correlation with down-regulated clusters. In accordance with these findings, the above two features of activation-dependent gene regulation in Treg cells tend to occur at different locations in the genome. The results collectively indicate that Treg-specific DNA hypomethylation is instrumental in gene up-regulation in steady state Treg cells, whereas Foxp3 down-regulates the expression of its target genes in activated Treg cells. Thus, the two events seem to play distinct but complementary roles in Treg-specific gene expression.
    Type of Medium: Online Resource
    ISSN: 0027-8424 , 1091-6490
    RVK:
    RVK:
    Language: English
    Publisher: Proceedings of the National Academy of Sciences
    Publication Date: 2014
    detail.hit.zdb_id: 209104-5
    detail.hit.zdb_id: 1461794-8
    SSG: 11
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Science, American Association for the Advancement of Science (AAAS), Vol. 379, No. 6634 ( 2023-02-24)
    Abstract: The Hayabusa2 spacecraft made two landings on the asteroid (162173) Ryugu in 2019, during which it collected samples of the surface material. Those samples were delivered to Earth in December 2020. The colors, shapes, and morphologies of the returned samples are consistent with those observed on Ryugu by Hayabusa2, indicating that they are representative of the asteroid. Laboratory analysis of the samples can determine the chemical composition of Ryugu and provide information on its formation and history. RATIONALE We used laboratory analysis to inform the following questions: (i) What are the elemental abundances of Ryugu? (ii) What are the isotopic compositions of Ryugu? (iii) Does Ryugu consist of primary materials produced in the disk from which the Solar System formed or of secondary materials produced in the asteroid or on a parent asteroid? (iv) When were Ryugu’s constituent materials formed? (v) What, if any, relationship does Ryugu have with meteorites? RESULTS We quantified the abundances of 66 elements in the Ryugu samples: H, Li, Be, C, O, Na, Mg, Al, Si, P, S, Cl, K, Ca, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Ga, Ge, As, Se, Rb, Sr, Y, Zr, Nb, Mo, Ru, Rh, Pd, Ag, Cd, In, Sn, Te, Cs, Ba, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, Hf, Ta, W, Tl, Pb, Bi, Th, and U. There is a slight variation in chemical compositions between samples from the first and second touchdown sites, but the variations could be due to heterogeneity among the samples that were analyzed. The Cr-Ti isotopes and abundance of volatile elements are similar to those of carbonaceous meteorites in the CI (Ivuna-like) chondrite group. The Ryugu samples consist of the minerals magnetite, breunnerite, dolomite, and pyrrhotite as grains embedded in a matrix composed of serpentine and saponite. This mineral assemblage and the texture are also similar to those of CI meteorites. Anhydrous silicates are almost absent, which indicates extensive liquid water–rock reactions (aqueous alteration) in the material. We conclude that the samples mainly consist of secondary materials that were formed by aqueous alteration in a parent body, from which Ryugu later formed. The oxygen isotopes in the bulk Ryugu samples are also similar to those in CI chondrites. We used oxygen isotope thermometry to determine the temperature at which the dolomite and magnetite precipitated from an aqueous solution, which we found to be 37° ± 10°C. The 53 Mn- 53 Cr isotopes date the aqueous alteration at 5.2 − 0.7 + 0.8 million (statistical) or 5.2 − 2.1 + 1.6 million (systematic) years after the birth of the Solar System. Phyllosilicate minerals are the main host of water in the Ryugu samples. The amount of structural water in Ryugu is similar to that in CI chondrites, but interlayer water is largely absent in Ryugu, which suggests a loss of interlayer water to space. The abundance of structural water and results from dehydration experiments indicate that the Ryugu samples remained below ~100°C from the time of aqueous alteration until the present. We ascribe the removal of interlayer water to a combination of impact heating, solar heating, solar wind irradiation, and long-term exposure to the ultrahigh vacuum of space. The loss of interlayer water from phyllosilicates could be responsible for the comet-like activity of some carbonaceous asteroids and the ejection of solid material from the surface of asteroid Bennu. CONCLUSION The Ryugu samples are most similar to CI chondrite meteorites but are more chemically pristine. The chemical composition of the Ryugu samples is a closer match to the Sun’s photosphere than to the composition of any other natural samples studied in laboratories. CI chondrites appear to have been modified on Earth or during atmospheric entry. Such modification of CI chondrites could have included the alteration of the structures of organics and phyllosilicates, the adsorption of terrestrial water, and the formation of sulfates and ferrihydrites. Those issues do not affect the Ryugu samples. Those modifications might have changed the albedo, porosity, and density of the CI chondrites, causing the observed differences between CI meteorites, Hayabusa2 measurements of Ryugu’s surface, and the Ryugu samples returned to Earth. Representative petrography of a Ryugu sample, designated C0002-C1001. Colors indicate elemental abundances determined from x-ray spectroscopy. Lines of iron, sulfur, and calcium are shown as red, green, and blue (RGB) color channels in that order. Combinations of these elements are assigned to specific minerals, as indicated in the legend. All visible minerals were formed by aqueous alteration on Ryugu’s parent body.
    Type of Medium: Online Resource
    ISSN: 0036-8075 , 1095-9203
    RVK:
    RVK:
    Language: English
    Publisher: American Association for the Advancement of Science (AAAS)
    Publication Date: 2023
    detail.hit.zdb_id: 128410-1
    detail.hit.zdb_id: 2066996-3
    detail.hit.zdb_id: 2060783-0
    SSG: 11
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, Vol. 100, No. 7 ( 2003-04), p. 4185-4190
    Abstract: A low molecular weight nonpeptide compound, KRH-1636, efficiently blocked replication of various T cell line-tropic (X4) HIV type 1 (HIV-1) in MT-4 cells and peripheral blood mononuclear cells through the inhibition of viral entry and membrane fusion via the CXC chemokine receptor (CXCR)4 coreceptor but not via CC chemokine receptor 5. It also inhibited binding of the CXC chemokine, stromal cell-derived factor 1α, to CXCR4 specifically and subsequent signal transduction. KRH-1636 prevented monoclonal antibodies from binding to CXCR4 without down-modulation of the coreceptor. The inhibitory effect against X4 viral replication by KRH-1636 was clearly reproduced in the human peripheral blood lymphocyte/severe combined immunodeficiency mouse system. Furthermore, this compound was absorbed into the blood after intraduodenal administration as judged by anti-HIV-1 activity and liquid chromatography MS in the plasma. Thus, KRH-1636 seems to be a promising agent for the treatment of HIV-1 infection.
    Type of Medium: Online Resource
    ISSN: 0027-8424 , 1091-6490
    RVK:
    RVK:
    Language: English
    Publisher: Proceedings of the National Academy of Sciences
    Publication Date: 2003
    detail.hit.zdb_id: 209104-5
    detail.hit.zdb_id: 1461794-8
    SSG: 11
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Online Resource
    Online Resource
    Proceedings of the National Academy of Sciences ; 2015
    In:  Proceedings of the National Academy of Sciences Vol. 112, No. 47 ( 2015-11-24), p. 14629-14634
    In: Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, Vol. 112, No. 47 ( 2015-11-24), p. 14629-14634
    Abstract: During the human in vitro fertilization procedure in the assisted reproductive technology, intracytoplasmic sperm injection is routinely used to inject a spermatozoon or a less mature elongating spermatid into the oocyte. In some infertile men, round spermatids (haploid male germ cells that have completed meiosis) are the most mature cells visible during testicular biopsy. The microsurgical injection of a round spermatid into an oocyte as a substitute is commonly referred to as round spermatid injection (ROSI). Currently, human ROSI is considered a very inefficient procedure and of no clinical value. Herein, we report the birth and development of 14 children born to 12 women following ROSI of 734 oocytes previously activated by an electric current. The round spermatids came from men who had been diagnosed as not having spermatozoa or elongated spermatids by andrologists at other hospitals after a first Micro-TESE. A key to our success was our ability to identify round spermatids accurately before oocyte injection. As of today, all children born after ROSI in our clinic are without any unusual physical, mental, or epigenetic problems. Thus, for men whose germ cells are unable to develop beyond the round spermatid stage, ROSI can, as a last resort, enable them to have their own genetic offspring.
    Type of Medium: Online Resource
    ISSN: 0027-8424 , 1091-6490
    RVK:
    RVK:
    Language: English
    Publisher: Proceedings of the National Academy of Sciences
    Publication Date: 2015
    detail.hit.zdb_id: 209104-5
    detail.hit.zdb_id: 1461794-8
    SSG: 11
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    In: Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, Vol. 116, No. 32 ( 2019-08-06), p. 15842-15848
    Abstract: Combining the strength of flow cytometry with fluorescence imaging and digital image analysis, imaging flow cytometry is a powerful tool in diverse fields including cancer biology, immunology, drug discovery, microbiology, and metabolic engineering. It enables measurements and statistical analyses of chemical, structural, and morphological phenotypes of numerous living cells to provide systematic insights into biological processes. However, its utility is constrained by its requirement of fluorescent labeling for phenotyping. Here we present label-free chemical imaging flow cytometry to overcome the issue. It builds on a pulse pair-resolved wavelength-switchable Stokes laser for the fastest-to-date multicolor stimulated Raman scattering (SRS) microscopy of fast-flowing cells on a 3D acoustic focusing microfluidic chip, enabling an unprecedented throughput of up to ∼140 cells/s. To show its broad utility, we use the SRS imaging flow cytometry with the aid of deep learning to study the metabolic heterogeneity of microalgal cells and perform marker-free cancer detection in blood.
    Type of Medium: Online Resource
    ISSN: 0027-8424 , 1091-6490
    RVK:
    RVK:
    Language: English
    Publisher: Proceedings of the National Academy of Sciences
    Publication Date: 2019
    detail.hit.zdb_id: 209104-5
    detail.hit.zdb_id: 1461794-8
    SSG: 11
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    In: Science, American Association for the Advancement of Science (AAAS), Vol. 323, No. 5912 ( 2009-01-16), p. 388-393
    Abstract: Axon guidance proteins are critical for the correct wiring of the nervous system during development. Several axon guidance cues and their family members have been well characterized. More unidentified axon guidance cues are assumed to participate in the formation of the extremely complex nervous system. We identified a secreted protein, draxin, that shares no homology with known guidance cues. Draxin inhibited or repelled neurite outgrowth from dorsal spinal cord and cortical explants in vitro. Ectopically expressed draxin inhibited growth or caused misrouting of chick spinal cord commissural axons in vivo. draxin knockout mice showed defasciculation of spinal cord commissural axons and absence of all forebrain commissures. Thus, draxin is a previously unknown chemorepulsive axon guidance molecule required for the development of spinal cord and forebrain commissures.
    Type of Medium: Online Resource
    ISSN: 0036-8075 , 1095-9203
    RVK:
    RVK:
    Language: English
    Publisher: American Association for the Advancement of Science (AAAS)
    Publication Date: 2009
    detail.hit.zdb_id: 128410-1
    detail.hit.zdb_id: 2066996-3
    detail.hit.zdb_id: 2060783-0
    SSG: 11
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    In: Science, American Association for the Advancement of Science (AAAS), Vol. 379, No. 6634 ( 2023-02-24)
    Abstract: Surface material from the near-Earth carbonaceous (C-type) asteroid (162173) Ryugu was collected and brought to Earth by the Hayabusa2 spacecraft. Ryugu is a dark, primitive asteroid containing hydrous minerals that are similar to the most hydrated carbonaceous meteorites. C-type asteroids are common in the asteroid belt and have been proposed as the parent bodies of carbonaceous meteorites. The samples of Ryugu provide an opportunity to investigate organic compounds for comparison with those from carbonaceous meteorites. Unlike meteorites, the Ryugu samples were collected and delivered for study under controlled conditions, reducing terrestrial contamination and the effects of atmospheric entry. RATIONALE Primitive carbonaceous chondrite meteorites are known to contain a variety of soluble organic molecules (SOMs), including prebiotic molecules such as amino acids. Meteorites might have delivered amino acids and other prebiotic organic molecules to the early Earth and other rocky planets. Organic matter in the Ryugu samples is the product of physical and chemical processes that occurred in the interstellar medium, the protosolar nebula, and/or on the planetesimal that became Ryugu’s parent body. We investigated SOMs in Ryugu samples principally using mass spectrometry coupled with liquid or gas chromatography. RESULTS We identified numerous organic molecules in the Ryugu samples. Mass spectroscopy detected hundreds of thousands of ion signals, which we assigned to ~20,000 elementary compositions consisting of carbon, hydrogen, nitrogen, oxygen, and/or sulfur. Fifteen amino acids, including glycine, alanine, and α-aminobutyric acid, were identified. These were present as racemic mixtures (equal right- and left-handed abundances), consistent with an abiotic origin. Aliphatic amines (such as methylamine) and carboxylic acids (such as acetic acid) were also detected, likely retained on Ryugu as organic salts. The presence of aromatic hydrocarbons, including alkylbenzenes, fluoranthene, and pyrene, implies hydrothermal processing on Ryugu’s parent body and/or presolar synthesis in the interstellar medium. Nitrogen-containing heterocyclic compounds were identified as their alkylated homologs, which could have been synthesized from simple aldehydes and ammonia. In situ analysis of a grain surface showed heterogeneous spatial distribution of alkylated homologs of nitrogen- and/or oxygen-containing compounds. CONCLUSION The wide variety of molecules identified indicates that prolonged chemical processes contributed to the synthesis of soluble organics on Ryugu or its parent body. The highly diverse mixture of SOMs in the samples resembles that seen in some carbonaceous chondrites. However, the SOM concentration in Ryugu is less than that in moderately aqueously altered CM (Mighei-type) chondrites, being more similar to that seen in warm aqueously altered CI (Ivuna-type) chondrites. The chemical diversity with low SOM concentration in Ryugu is consistent with aqueous organic chemistry at modest temperatures on Ryugu’s parent asteroid. The samples collected from the surface of Ryugu were exposed to the hard vacuum of space, energetic particle irradiation, heating by sunlight, and micrometeoroid impacts, but the SOM is still preserved, likely by being associated with minerals. The presence of prebiotic molecules on the asteroid surface suggests that these molecules can be transported throughout the Solar System. SOMs detected in surface samples of asteroid Ryugu. Chemical structural models are shown for example molecules from several classes identified in the Ryugu samples. Gray balls are carbon, white are hydrogen, red are oxygen, and blue are nitrogen. Clockwise from top: amines (represented by ethylamine), nitrogen-containing heterocycles (pyridine), a photograph of the sample vials for analysis, polycyclic aromatic hydrocarbons (PAHs) (pyrene), carboxylic acids (acetic acid), and amino acids (β-alanine). The central hexagon shows a photograph of the Ryugu sample in the sample collector of the Hayabusa2 spacecraft. The background image shows Ryugu in a photograph taken by Hayabusa2. CREDIT: JAXA, University of Tokyo, Kochi University, Rikkyo University, Nagoya University, Chiba Institute of Technology, Meiji University, University of Aizu, AIST, NASA, Dan Gallagher.
    Type of Medium: Online Resource
    ISSN: 0036-8075 , 1095-9203
    RVK:
    RVK:
    Language: English
    Publisher: American Association for the Advancement of Science (AAAS)
    Publication Date: 2023
    detail.hit.zdb_id: 128410-1
    detail.hit.zdb_id: 2066996-3
    detail.hit.zdb_id: 2060783-0
    SSG: 11
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    In: Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, Vol. 98, No. 7 ( 2001-03-27), p. 3843-3848
    Abstract: Human synovial sarcoma has been shown to exclusively harbor the chromosomal translocation t(X;18) that produces the chimeric gene SYT-SSX. However, the role of SYT-SSX in cellular transformation remains unclear. In this study, we have established 3Y1 rat fibroblast cell lines that constitutively express SYT, SSX1, and SYT-SSX1 and found that SYT-SSX1 promoted growth rate in culture, anchorage-independent growth in soft agar, and tumor formation in nude mice. Deletion of the N-terminal 181 amino acids of SYT-SSX1 caused loss of its transforming activity. Furthermore, association of SYT-SSX1 with the chromatin remodeling factor hBRM/hSNF2α, which regulates transcription, was demonstrated in both SYT-SSX1-expressing 3Y1 cells and in the human synovial sarcoma cell line HS-SY-II. The binding region between the two molecules was shown to reside within the N-terminal 181 amino acids stretch (aa 1–181) of SYT-SSX1 and 50 amino acids (aa 156–205) of hBRM/hSNF2α and we found that the overexpression of this binding region of hBRM/hSNF2α significantly suppressed the anchorage-independent growth of SYT-SSX1-expressing 3Y1 cells. To analyze the transcriptional regulation by SYT-SSX1, we established conditional expression system of SYT-SSX1 and examined the gene expression profiles. The down-regulation of potential tumor suppressor DCC was observed among 1,176 genes analyzed by microarray analysis, and semi-quantitative reverse transcription–PCR confirmed this finding. These data clearly demonstrate transforming activity of human oncogene SYT-SSX1 and also involvement of chromatin remodeling factor hBRM/hSNF2α in human cancer.
    Type of Medium: Online Resource
    ISSN: 0027-8424 , 1091-6490
    RVK:
    RVK:
    Language: English
    Publisher: Proceedings of the National Academy of Sciences
    Publication Date: 2001
    detail.hit.zdb_id: 209104-5
    detail.hit.zdb_id: 1461794-8
    SSG: 11
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    In: Science, American Association for the Advancement of Science (AAAS), Vol. 379, No. 6634 ( 2023-02-24)
    Abstract: Organic compounds in asteroids and comets contain information about the early history of the Solar System. They could also have delivered organic material to early Earth. The Hayabusa2 spacecraft visited the carbonaceous asteroid Ryugu and collected samples of its surface materials, which were brought to Earth in December 2020. RATIONALE We investigated the macromolecular organic matter in the Ryugu samples, measuring its elemental, isotopic, and functional group compositions along with its small-scale structures and morphologies. Analytical methods used included spectro-microscopies, electron microscopy, and isotopic microscopy. We examined intact Ryugu grains and insoluble carbonaceous residues isolated by acid treatment of the Ryugu samples. RESULTS Organic matter is abundant in the Ryugu grains, distributed as submicrometer-sized organic grains and as organic matter dispersed in matrix. The Ryugu organic matter consists of aromatic carbons, aliphatic carbons, ketones, and carboxyls. The functional group compositions are consistent with those of insoluble organic matter (IOM) from primitive carbonaceous CI (Ivuna-type) and CM (Mighei-type) chondritic meteorites. Those meteorites experienced aqueous alteration (reactions with liquid water) on their parent bodies, which implies that the Ryugu organic material was also modified by aqueous alteration on the asteroid parent body. The functional group distributions of the Ryugu organic matter vary on submicrometer scales in ways that relate to the morphologies: nanoparticulate and/or nanoglobular regions are aromatic-rich, whereas organic matter associated with Mg-rich phyllosilicate matrix and carbonates is IOM-like or occurs as diffuse carbon. The observed macromolecular diversity provides further evidence that the organics were modified by aqueous alteration on Ryugu’s parent body. The diffuse carbon is similar to clay-bound organic matter that occurs in CI chondrites and the ungrouped C2-type meteorite Tagish Lake. No graphite-like material was found, which indicates that the Ryugu organic matter was not subjected to heating events on the parent body. The bulk hydrogen and nitrogen isotopic ratios of the Ryugu grains are between the bulk values of CI chondrites and the IOM in CI chondrites. Some carbonaceous grains showed extreme deuterium (D) and/or nitrogen-15 ( 15 N) enrichments or depletions. These indicate an origin in the interstellar medium or presolar nebula. The bulk hydrogen isotopic ratios of insoluble carbonaceous residues from the Ryugu samples are lower than those in CI and CM chondrites. The range of D enrichments are consistent with the ranges of CI, CM, and Tagish Lake chondrites. The nitrogen isotopic ratios of the IOM from Ryugu samples were close to those in CI chondrites. CONCLUSION The organic matter in Ryugu probably consists of primordial materials that formed during (or before) the early stages of the Solar System’s formation, which were later modified by heterogeneous aqueous alteration on Ryugu’s parent body asteroid. Although the surface of Ryugu is exposed to solar wind, impacts, and heating by sunlight, the macromolecular organics in the surface grains of Ryugu are similar in their chemical, isotopic, and morphological compositions to those seen in primitive carbonaceous chondrites. The properties of Ryugu’s organic matter could explain the low albedo of the asteroid’s surface. Chemical evolution of macromolecular organic matter in samples of asteroid Ryugu. Organic matter formed in the interstellar medium or in the outer region of the protoplanetary disk that formed the Solar System. It was then incorporated into a planetesimal—Ryugu’s parent body—where it experienced varying degrees of reactions with liquid water. An impact ejected material from the parent body, which reassembled to form Ryugu. Samples were brought to Earth by Hayabusa2. CREDIT: HIROSHIMA UNIVERSITY, JAXA, UNIVERSITY OF TOKYO, KOCHI UNIVERSITY, RIKKYO UNIVERSITY, NAGOYA UNIVERSITY, CHIBA INSTITUTE OF TECHNOLOGY, MEIJI UNIVERSITY, UNIVERSITY OF AIZU, AIST
    Type of Medium: Online Resource
    ISSN: 0036-8075 , 1095-9203
    RVK:
    RVK:
    Language: English
    Publisher: American Association for the Advancement of Science (AAAS)
    Publication Date: 2023
    detail.hit.zdb_id: 128410-1
    detail.hit.zdb_id: 2066996-3
    detail.hit.zdb_id: 2060783-0
    SSG: 11
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    In: Science, American Association for the Advancement of Science (AAAS), Vol. 379, No. 6634 ( 2023-02-24)
    Abstract: The Hayabusa2 spacecraft retrieved surface and subsurface samples from the carbonaceous near-Earth asteroid (162173) Ryugu, which was expected to be enriched in volatile species. The samples were collected from two locations, one undisturbed surface and the other including material excavated by an artificial impact. Unlike meteorites, these samples have experienced minimal alteration by Earth’s atmosphere. Ryugu is thought to have formed from material ejected (by an impact) from a parent body, which had experienced aqueous alteration (reactions with liquid water) ~4.56 billion years (Gyr) ago. Ryugu’s orbit later migrated from the main asteroid belt to become a near-Earth asteroid. RATIONALE Noble gases and nitrogen isotopes in Ryugu grains are inherited from Ryugu’s parent body and potentially provide information about the source of Earth’s volatile elements. Noble gas isotopes can also be used to assess the orbital evolution and recent surface activities of Ryugu. We pelletized ~0.8-mm-diameter Ryugu grains and investigated their mineralogy before carrying out isotope measurements. We measured the concentrations and isotopic compositions of noble gases and nitrogen, extracted by stepped heating, with mass spectrometers. RESULTS The mineralogy of the Ryugu grains is similar to Ivuna-type carbonaceous (CI) chondrite meteorites. Fine-grained hydrous silicates (phyllosilicates), produced through aqueous alteration of primary minerals, compose the major fraction of the samples. This is consistent with infrared spectroscopic observations of the asteroid. Iron oxide, iron sulfides, and carbonates are also found within the matrix. Noble gas isotopes are dominated by primordially trapped gases. Their abundances are mostly similar to the highest found in a CI chondrite, with some grains having several times higher concentrations than the highest CI value. Isotopic compositions and concentrations of nitrogen vary between the Ryugu grains, with divergence from the CI chondrite composition. The nitrogen concentrations in four Ryugu grains are one-half to one-third the CI values, and the 15 N/ 14 N ratio is also lower. The Ryugu grains with compositions farthest from the CI values are similar to the composition of a dehydrated CI chondrite. Only two surface samples, out of the 16 Ryugu grains measured, have clear signs of noble gases derived from solar wind (SW). Their abundances correspond to SW exposure durations of ≳3500 and ≳250 years at the current orbit, whereas most of the grains were exposed for ≳1 to ≳50 years. Cosmic ray–produced 21 Ne concentrations vary, with no systematic difference between the sample collection sites. The estimated cosmic ray exposure (CRE) ages for the surface and subsurface samples are 5.3 ± 0.9 and 5.2 ± 0.8 million years (Myr), assuming irradiations at 2 to 5 g cm −2 and 150 g cm −2 , respectively. This is consistent with the expected surface residence time under near-Earth impact rates. We infer that Ryugu’s orbit migrated from the main asteroid belt to the near-Earth region ~5 Myr ago. About 30% of cosmogenic 21 Ne, corresponding to a CRE age of ~1 Myr, was released in gas-extraction steps at 100°C, indicating that the Ryugu samples have not experienced heating above 100°C within the past 1 Myr. Previous studies have suggested that Ryugu experienced an orbital excursion much closer to the Sun. If this is the case, this excursion must have occurred ≳1 Myr ago. CONCLUSION The mineralogical and noble gas measurements show that the Ryugu samples are similar to CI chondrites. The nitrogen data indicate a heterogeneous distribution of nitrogen-carrying materials with different compositions, one of which has been lost from Ryugu grains to varying degrees. The CRE age of ~5 Myr and the implanted SW are records of the recent irradiation at the current near-Earth orbit of Ryugu. Inferred formation and history of Ryugu. Ryugu’s parent body formed in the early Solar System, incorporating primordial noble gases and nitrogen, followed by aqueous alteration ~4.56 Gyr ago. Ryugu formed from the accumulation of fragments of the parent body ejected by an impact, at an unknown date. Ryugu migrated to its current near-Earth orbit ~5 Myr ago. Ryugu might have experienced another change in orbit, bringing it closer to the Sun (“Path A”), or remained in the same near-Earth orbit (“Path B”).
    Type of Medium: Online Resource
    ISSN: 0036-8075 , 1095-9203
    RVK:
    RVK:
    Language: English
    Publisher: American Association for the Advancement of Science (AAAS)
    Publication Date: 2023
    detail.hit.zdb_id: 128410-1
    detail.hit.zdb_id: 2066996-3
    detail.hit.zdb_id: 2060783-0
    SSG: 11
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...