GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, Vol. 109, No. 25 ( 2012-06-19), p. 9959-9964
    Abstract: Idiosyncratic adverse drug reactions are unpredictable, dose-independent and potentially life threatening; this makes them a major factor contributing to the cost and uncertainty of drug development. Clinical data suggest that many such reactions involve immune mechanisms, and genetic association studies have identified strong linkages between drug hypersensitivity reactions to several drugs and specific HLA alleles. One of the strongest such genetic associations found has been for the antiviral drug abacavir, which causes severe adverse reactions exclusively in patients expressing the HLA molecular variant B*57:01. Abacavir adverse reactions were recently shown to be driven by drug-specific activation of cytokine-producing, cytotoxic CD8 + T cells that required HLA-B*57:01 molecules for their function; however, the mechanism by which abacavir induces this pathologic T-cell response remains unclear. Here we show that abacavir can bind within the F pocket of the peptide-binding groove of HLA-B*57:01, thereby altering its specificity. This provides an explanation for HLA-linked idiosyncratic adverse drug reactions, namely that drugs can alter the repertoire of self-peptides presented to T cells, thus causing the equivalent of an alloreactive T-cell response. Indeed, we identified specific self-peptides that are presented only in the presence of abacavir and that were recognized by T cells of hypersensitive patients. The assays that we have established can be applied to test additional compounds with suspected HLA-linked hypersensitivities in vitro. Where successful, these assays could speed up the discovery and mechanistic understanding of HLA-linked hypersensitivities, and guide the development of safer drugs.
    Type of Medium: Online Resource
    ISSN: 0027-8424 , 1091-6490
    RVK:
    RVK:
    Language: English
    Publisher: Proceedings of the National Academy of Sciences
    Publication Date: 2012
    detail.hit.zdb_id: 209104-5
    detail.hit.zdb_id: 1461794-8
    SSG: 11
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    American Association for the Advancement of Science (AAAS) ; 2000
    In:  Science Vol. 290, No. 5492 ( 2000-10-27), p. 816-819
    In: Science, American Association for the Advancement of Science (AAAS), Vol. 290, No. 5492 ( 2000-10-27), p. 816-819
    Abstract: The effective regulation of T cell responses is dependent on opposing signals transmitted through two related cell-surface receptors, CD28 and cytotoxic T lymphocyte–associated antigen 4 (CTLA-4). Dimerization of CTLA-4 is required for the formation of high-avidity complexes with B7 ligands and for transmission of signals that attenuate T cell activation. We determined the crystal structure of the extracellular portion of CTLA-4 to 2.0 angstrom resolution. CTLA-4 belongs to the immunoglobulin superfamily and displays a strand topology similar to Vα domains, with an unusual mode of dimerization that places the B7 binding sites distal to the dimerization interface. This organization allows each CTLA-4 dimer to bind two bivalent B7 molecules and suggests that a periodic arrangement of these components within the immunological synapse may contribute to the regulation of T cell responsiveness.
    Type of Medium: Online Resource
    ISSN: 0036-8075 , 1095-9203
    RVK:
    RVK:
    Language: English
    Publisher: American Association for the Advancement of Science (AAAS)
    Publication Date: 2000
    detail.hit.zdb_id: 128410-1
    detail.hit.zdb_id: 2066996-3
    detail.hit.zdb_id: 2060783-0
    SSG: 11
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    American Association for the Advancement of Science (AAAS) ; 2012
    In:  Science Vol. 338, No. 6108 ( 2012-11-09), p. 748-749
    In: Science, American Association for the Advancement of Science (AAAS), Vol. 338, No. 6108 ( 2012-11-09), p. 748-749
    Abstract: The coagulation system protects our bodies from excessive loss of blood from a leaky or damaged vessel, whereas the immune system protects us from invading pathogens such as viruses. Unexpected links between these two systems suggest their coevolution ( 1 , 2 ). On page 795 in this issue, Doronin et al. show that an essential protein for the clotting process binds to a virus that has entered the blood stream, thereby allowing the immune system to sense the invader and mount a rapid and potent antiviral response ( 3 ).
    Type of Medium: Online Resource
    ISSN: 0036-8075 , 1095-9203
    RVK:
    RVK:
    Language: English
    Publisher: American Association for the Advancement of Science (AAAS)
    Publication Date: 2012
    detail.hit.zdb_id: 128410-1
    detail.hit.zdb_id: 2066996-3
    detail.hit.zdb_id: 2060783-0
    SSG: 11
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, Vol. 101, No. 44 ( 2004-11-02), p. 15706-15711
    Abstract: The novel immune-type receptor (NITR) genes encode a unique multigene family of leukocyte regulatory receptors, which possess an extracellular Ig variable (V) domain and may function in innate immunity. Artificial chromosomes that encode zebrafish NITRs have been assembled into a contig spanning ≈350 kb. Resolution of the complete NITR gene cluster has led to the identification of eight previously undescribed families of NITRs and has revealed the presence of C-type lectins within the locus. A maximum haplotype of 36 NITR genes (138 gene sequences in total) can be grouped into 12 distinct families, including inhibitory and activating receptors. An extreme level of interindividual heterozygosity is reflected in allelic polymorphisms, haplotype variation, and family-specific isoform complexity. In addition, the exceptional diversity of NITR sequences among species suggests divergent evolution of this multigene family with a birth-and-death process of member genes. High-confidence modeling of Nitr V-domain structures reveals a significant shift in the spatial orientation of the Ig fold, in the region of highest interfamily variation, compared with Ig V domains. These studies resolve a complete immune gene cluster in zebrafish and indicate that the NITRs represent the most complex family of activating/inhibitory surface receptors thus far described.
    Type of Medium: Online Resource
    ISSN: 0027-8424 , 1091-6490
    RVK:
    RVK:
    Language: English
    Publisher: Proceedings of the National Academy of Sciences
    Publication Date: 2004
    detail.hit.zdb_id: 209104-5
    detail.hit.zdb_id: 1461794-8
    SSG: 11
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...