GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Proceedings of the National Academy of Sciences  (4)
  • Linguistics  (4)
  • 1
    In: Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, Vol. 120, No. 42 ( 2023-10-17)
    Abstract: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections are causing significant morbidity and mortality worldwide. Furthermore, over 1 million cases of newly emerging or re-emerging viral infections, specifically dengue virus (DENV), are known to occur annually. Because no virus-specific and fully effective treatments against these or many other viruses have been approved, there is an urgent need for novel, effective therapeutic agents. Here, we identified 2-thiouridine (s2U) as a broad-spectrum antiviral ribonucleoside analogue that exhibited antiviral activity against several positive-sense single-stranded RNA (ssRNA+) viruses, such as DENV, SARS-CoV-2, and its variants of concern, including the currently circulating Omicron subvariants. s2U inhibits RNA synthesis catalyzed by viral RNA-dependent RNA polymerase, thereby reducing viral RNA replication, which improved the survival rate of mice infected with DENV2 or SARS-CoV-2 in our animal models. Our findings demonstrate that s2U is a potential broad-spectrum antiviral agent not only against DENV and SARS-CoV-2 but other ssRNA+ viruses.
    Type of Medium: Online Resource
    ISSN: 0027-8424 , 1091-6490
    RVK:
    RVK:
    Language: English
    Publisher: Proceedings of the National Academy of Sciences
    Publication Date: 2023
    detail.hit.zdb_id: 209104-5
    detail.hit.zdb_id: 1461794-8
    SSG: 11
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    Proceedings of the National Academy of Sciences ; 2013
    In:  Proceedings of the National Academy of Sciences Vol. 110, No. 17 ( 2013-04-23), p. 7009-7013
    In: Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, Vol. 110, No. 17 ( 2013-04-23), p. 7009-7013
    Abstract: The migration and positioning of osteoclast precursor monocytes are controlled by the blood-enriched lipid mediator sphingosine-1-phosphate (S1P) and have recently been shown to be critical points of control in osteoclastogenesis and bone homeostasis. Here, we show that calcitriol, which is the hormonally active form of vitamin D, and its therapeutically used analog, eldecalcitol, inhibit bone resorption by modulating this mechanism. Vitamin D analogs have been used clinically for treating osteoporosis, although the mode of its pharmacologic action remains to be fully elucidated. In this study, we found that active vitamin D reduced the expression of S1PR2, a chemorepulsive receptor for blood S1P, on circulating osteoclast precursor monocytes both in vitro and in vivo. Calcitriol- or eldecalcitol-treated monocytoid RAW264.7 cells, which display osteoclast precursor-like properties, migrated readily to S1P. Concordantly, the mobility of circulating CX 3 CR1 + osteoclast precursor monocytes was significantly increased on systemic administration of active vitamin D. These results show a mechanism for active vitamin D in controlling the migratory behavior of circulating osteoclast precursors, and this action should be conducive to limiting osteoclastic bone resorption in vivo.
    Type of Medium: Online Resource
    ISSN: 0027-8424 , 1091-6490
    RVK:
    RVK:
    Language: English
    Publisher: Proceedings of the National Academy of Sciences
    Publication Date: 2013
    detail.hit.zdb_id: 209104-5
    detail.hit.zdb_id: 1461794-8
    SSG: 11
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    Proceedings of the National Academy of Sciences ; 2010
    In:  Proceedings of the National Academy of Sciences Vol. 107, No. 18 ( 2010-05-04), p. 8254-8258
    In: Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, Vol. 107, No. 18 ( 2010-05-04), p. 8254-8258
    Abstract: Formation and remodeling of the skeleton relies on precise temporal and spatial regulation of genes expressed in cartilage and bone cells. Debilitating diseases of the skeletal system occur when mutations arise that disrupt these intricate genetic regulatory programs. Here, we report that mice bearing parallel null mutations in the adapter proteins Schnurri2 (Shn2) and Schnurri3 (Shn3) exhibit defects in patterning of the axial skeleton during embryogenesis. Postnatally, these compound mutant mice develop a unique osteochondrodysplasia. The deletion of Shn2 and Shn3 impairs growth plate maturation during endochondral ossification but simultaneously results in massively elevated trabecular bone formation. Hence, growth plate maturation and bone formation can be uncoupled under certain circumstances. These unexpected findings demonstrate that both unique and redundant functions reside in the Schnurri protein family that are required for proper skeletal patterning and remodeling.
    Type of Medium: Online Resource
    ISSN: 0027-8424 , 1091-6490
    RVK:
    RVK:
    Language: English
    Publisher: Proceedings of the National Academy of Sciences
    Publication Date: 2010
    detail.hit.zdb_id: 209104-5
    detail.hit.zdb_id: 1461794-8
    SSG: 11
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Online Resource
    Online Resource
    Proceedings of the National Academy of Sciences ; 1997
    In:  Proceedings of the National Academy of Sciences Vol. 94, No. 19 ( 1997-09-16), p. 10215-10220
    In: Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, Vol. 94, No. 19 ( 1997-09-16), p. 10215-10220
    Abstract: CBP is a transcriptional coactivator required by many transcription factors for transactivation. Rubinstein–Taybi syndrome, which is an autosomal dominant syndrome characterized by abnormal pattern formation, has been shown to be associated with mutations in the Cbp gene. Furthermore, Drosophila CBP is required in hedgehog signaling for the expression of decapentapleigic , the Drosophila homologue of bone morphogenetic protein. However, no direct evidence exists to indicate that loss of one copy of the mammalian Cbp gene affects pattern formation. Here, we show that various abnormalities occur at high frequency in the skeletal system of heterozygous Cbp -deficient mice resulting from a C57BL/6-CBA × BALB/c cross. In support of a conserved signaling pathway for pattern formation in insects and mammals, the expression of Bmp7 was found to be reduced in the heterozygous mutants. The frequency of the different abnormalities was significantly lower in a C57BL/6-CBA background, suggesting that the genetic background is an important determinant of the variability and severity of the anomalies seen in Rubinstein–Taybi syndrome patients.
    Type of Medium: Online Resource
    ISSN: 0027-8424 , 1091-6490
    RVK:
    RVK:
    Language: English
    Publisher: Proceedings of the National Academy of Sciences
    Publication Date: 1997
    detail.hit.zdb_id: 209104-5
    detail.hit.zdb_id: 1461794-8
    SSG: 11
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...