GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: The Journal of Neuroscience, Society for Neuroscience, Vol. 29, No. 30 ( 2009-07-29), p. 9500-9509
    Abstract: α-Lipoic acid (1,2-dithiolane-3-pentanoic acid; lipoic acid) is an endogenous compound used to treat pain disorders in humans, but its mechanisms of analgesic action are not well understood. Here, we show that lipoic acid selectively inhibited native Ca V 3.2 T-type calcium currents (T-currents) and diminished T-channel-dependent cellular excitability in acutely isolated rat sensory neurons. Lipoic acid locally injected into peripheral receptive fields of pain-sensing sensory neurons (nociceptors) in vivo decreased sensitivity to noxious thermal and mechanical stimuli in wild-type but not Ca V 3.2 knock-out mice. Ensuing molecular studies demonstrated that lipoic acid inhibited recombinant Ca V 3.2 channels heterologously expressed in human embryonic kidney 293 cells by oxidating specific thiol residues on the cytoplasmic face of the channel. This study provides the first mechanistic demonstration of a nociceptive ion channel modulation that may contribute to the documented analgesic properties of lipoic acid in vivo .
    Type of Medium: Online Resource
    ISSN: 0270-6474 , 1529-2401
    Language: English
    Publisher: Society for Neuroscience
    Publication Date: 2009
    detail.hit.zdb_id: 1475274-8
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    Proceedings of the National Academy of Sciences ; 2006
    In:  Proceedings of the National Academy of Sciences Vol. 103, No. 15 ( 2006-04-11), p. 5758-5763
    In: Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, Vol. 103, No. 15 ( 2006-04-11), p. 5758-5763
    Abstract: Understanding allostery may serve to both elucidate mechanisms of protein regulation and provide a basis for engineering active mutants. Herein we describe directed evolution applied to the integrin α L inserted domain for studying allostery by using a yeast surface display system. Many hot spots for activation are identified, and some single mutants exhibit remarkable increases of 10,000-fold in affinity for a physiological ligand, intercellular adhesion molecule-1. The location of activating mutations traces out an allosteric interface in the interior of the inserted domain that connects the ligand binding site to the α7-helix, which communicates allostery to neighboring domains in intact integrins. The combination of two activating mutations (F265S/F292G) leads to an increase of 200,000-fold in affinity to intercellular adhesion molecule-1. The F265S/F292G mutant is potent in antagonizing lymphocyte function-associated antigen 1-dependent lymphocyte adhesion, aggregation, and transmigration.
    Type of Medium: Online Resource
    ISSN: 0027-8424 , 1091-6490
    RVK:
    RVK:
    Language: English
    Publisher: Proceedings of the National Academy of Sciences
    Publication Date: 2006
    detail.hit.zdb_id: 209104-5
    detail.hit.zdb_id: 1461794-8
    SSG: 11
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    Proceedings of the National Academy of Sciences ; 2006
    In:  Proceedings of the National Academy of Sciences Vol. 103, No. 33 ( 2006-08-15), p. 12625-12630
    In: Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, Vol. 103, No. 33 ( 2006-08-15), p. 12625-12630
    Abstract: Nutrient sensing is critical for plant adaptation to the environment. Because of extensive farming and erosion, low content of mineral nutrients such as potassium (K + ) in soils becomes a limiting factor for plant growth. In response to low-K conditions, plants enhance their capability of K + uptake through an unknown signaling mechanism. Here we report the identification of a Ca 2+ -dependent pathway for low-K response in Arabidopsis . We are not aware of any other example of a molecular pathway for a nutrient response in plants. Earlier genetic analyses revealed three genes encoding two Ca 2+ sensors (CBL1 and CBL9) and their target protein kinase (CIPK23) to be critical for plant growth on low-K media and for stomatal regulation, indicating that these calcium signaling components participate in the low-K response and turgor regulation. In this study, we show that the protein kinase CIPK23 interacted with, and phosphorylated, a voltage-gated inward K + channel (AKT1) required for K + acquisition in Arabidopsis . In the Xenopus oocyte system, our studies showed that interacting calcium sensors (CBL1 and CBL9) together with target kinase CIPK23, but not either component alone, activated the AKT1 channel in a Ca 2+ -dependent manner, connecting the Ca 2+ signal to enhanced K + uptake through activation of a K + channel. Disruption of both CBL1 and CBL9 or CIPK23 gene in Arabidopsis reduced the AKT1 activity in the mutant roots, confirming that the Ca 2+ -CBL-CIPK pathway functions to orchestrate transporting activities in planta according to external K + availability.
    Type of Medium: Online Resource
    ISSN: 0027-8424 , 1091-6490
    RVK:
    RVK:
    Language: English
    Publisher: Proceedings of the National Academy of Sciences
    Publication Date: 2006
    detail.hit.zdb_id: 209104-5
    detail.hit.zdb_id: 1461794-8
    SSG: 11
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, Vol. 105, No. 9 ( 2008-03-04), p. 3622-3627
    Abstract: A hallmark of the pathology of Alzheimer's disease is the accumulation of the microtubule-associated protein tau into fibrillar aggregates. Recent studies suggest that they accumulate because cytosolic chaperones fail to clear abnormally phosphorylated tau, preserving a pool of toxic tau intermediates within the neuron. We describe a mechanism for tau clearance involving a major cellular kinase, Akt. During stress, Akt is ubiquitinated and degraded by the tau ubiquitin ligase CHIP, and this largely depends on the Hsp90 complex. Akt also prevents CHIP-induced tau ubiquitination and its subsequent degradation, either by regulating the Hsp90/CHIP complex directly or by competing as a client protein with tau for binding. Akt levels tightly regulate the expression of CHIP, such that, as Akt levels are suppressed, CHIP levels also decrease, suggesting a potential stress response feedback mechanism between ligase and kinase activity. We also show that Akt and the microtubule affinity-regulating kinase 2 (PAR1/MARK2), a known tau kinase, interact directly. Akt enhances the activity of PAR1 to promote tau hyperphosphorylation at S262/S356, a tau species that is not recognized by the CHIP/Hsp90 complex. Moreover, Akt1 knockout mice have reduced levels of tau phosphorylated at PAR1/MARK2 consensus sites. Hence, Akt serves as a major regulator of tau biology by manipulating both tau kinases and protein quality control, providing a link to several common pathways that have demonstrated dysfunction in Alzheimer's disease.
    Type of Medium: Online Resource
    ISSN: 0027-8424 , 1091-6490
    RVK:
    RVK:
    Language: English
    Publisher: Proceedings of the National Academy of Sciences
    Publication Date: 2008
    detail.hit.zdb_id: 209104-5
    detail.hit.zdb_id: 1461794-8
    SSG: 11
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    In: Science, American Association for the Advancement of Science (AAAS), Vol. 316, No. 5832 ( 2007-06-22), p. 1759-1761
    Abstract: Aminoacyl–transfer RNA (tRNA) synthetases, which catalyze the attachment of the correct amino acid to its corresponding tRNA during translation of the genetic code, are proven antimicrobial drug targets. We show that the broad-spectrum antifungal 5-fluoro-1,3-dihydro-1-hydroxy-2,1-benzoxaborole (AN2690), in development for the treatment of onychomycosis, inhibits yeast cytoplasmic leucyl-tRNA synthetase by formation of a stable tRNA Leu -AN2690 adduct in the editing site of the enzyme. Adduct formation is mediated through the boron atom of AN2690 and the 2′- and 3′-oxygen atoms of tRNA's3′-terminal adenosine. The trapping of enzyme-bound tRNA Leu in the editing site prevents catalytic turnover, thus inhibiting synthesis of leucyl-tRNA Leu and consequentially blocking protein synthesis. This result establishes the editing site as a bona fide target for aminoacyl-tRNA synthetase inhibitors.
    Type of Medium: Online Resource
    ISSN: 0036-8075 , 1095-9203
    RVK:
    RVK:
    Language: English
    Publisher: American Association for the Advancement of Science (AAAS)
    Publication Date: 2007
    detail.hit.zdb_id: 128410-1
    detail.hit.zdb_id: 2066996-3
    detail.hit.zdb_id: 2060783-0
    SSG: 11
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Online Resource
    Online Resource
    American Association for the Advancement of Science (AAAS) ; 2007
    In:  Science Vol. 315, No. 5810 ( 2007-01-19), p. 353-356
    In: Science, American Association for the Advancement of Science (AAAS), Vol. 315, No. 5810 ( 2007-01-19), p. 353-356
    Abstract: Vapor deposition has been used to create glassy materials with extraordinary thermodynamic and kinetic stability and high density. For glasses prepared from indomethacin or 1,3-bis-(1-naphthyl)-5-(2-naphthyl)benzene, stability is optimized when deposition occurs on substrates at a temperature of 50 K below the conventional glass transition temperature. We attribute the substantial improvement in thermodynamic and kinetic properties to enhanced mobility within a few nanometers of the glass surface during deposition. This technique provides an efficient means of producing glassy materials that are low on the energy landscape and could affect technologies such as amorphous pharmaceuticals.
    Type of Medium: Online Resource
    ISSN: 0036-8075 , 1095-9203
    RVK:
    RVK:
    Language: English
    Publisher: American Association for the Advancement of Science (AAAS)
    Publication Date: 2007
    detail.hit.zdb_id: 128410-1
    detail.hit.zdb_id: 2066996-3
    detail.hit.zdb_id: 2060783-0
    SSG: 11
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Online Resource
    Online Resource
    Society for Neuroscience ; 2008
    In:  The Journal of Neuroscience Vol. 28, No. 14 ( 2008-04-02), p. 3697-3706
    In: The Journal of Neuroscience, Society for Neuroscience, Vol. 28, No. 14 ( 2008-04-02), p. 3697-3706
    Abstract: We investigated the effect of transient dopamine depletion on functional connectivity during performance of the Wisconsin Card Sorting Task. Functional magnetic resonance imaging data were analyzed as a psychophysiological interaction, a statistical method used to identify functional connectivity during experimental manipulations. Nineteen healthy subjects were scanned, double blind, on 2 separate days: once after drinking an amino acid mixture deficient in the dopamine precursors tyrosine and phenylalanine, and once after drinking a nutritionally balanced mixture. In the balanced drink session, statistically significant connectivity between the frontal lobes and striatum was observed during set shifting, and the greater the prefrontostriatal connectivity, the faster the response time after a shift. Neither of these associations were observed after dopamine depletion. Moreover, dopamine depletion also reduced the degree of deactivation in areas normally suppressed during attention-demanding tasks, including the medial prefrontal cortex, posterior cingulate cortex, and hippocampus. Together, these results suggest that functional connectivity between the frontal lobes and basal ganglia during set shifting contributes to more efficient performance and that dopamine modulates this corticostriatal connectivity.
    Type of Medium: Online Resource
    ISSN: 0270-6474 , 1529-2401
    Language: English
    Publisher: Society for Neuroscience
    Publication Date: 2008
    detail.hit.zdb_id: 1475274-8
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Online Resource
    Online Resource
    Proceedings of the National Academy of Sciences ; 2008
    In:  Proceedings of the National Academy of Sciences Vol. 105, No. 5 ( 2008-02-05), p. 1454-1459
    In: Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, Vol. 105, No. 5 ( 2008-02-05), p. 1454-1459
    Abstract: Large-scale affinity purification and mass spectrometry studies have played important roles in the assembly and analysis of comprehensive protein interaction networks for lower eukaryotes. However, the development of such networks for human proteins has been slowed by the high cost and significant technical challenges associated with systematic studies of protein interactions. To address this challenge, we have developed a method for building local and focused networks. This approach couples vector algebra and statistical methods with normalized spectral counting (NSAF) derived from the analysis of affinity purifications via chromatography-based proteomics. After mathematical removal of contaminant proteins, the core components of multiprotein complexes are determined by singular value decomposition analysis and clustering. The probability of interactions within and between complexes is computed solely based upon NSAFs using Bayes' approach. To demonstrate the application of this method to small-scale datasets, we analyzed an expanded human TIP49a and TIP49b dataset. This dataset contained proteins affinity-purified with 27 different epitope-tagged components of the chromatin remodeling SRCAP, hINO80, and TRRAP/TIP60 complexes, and the nutrient sensing complex Uri/Prefoldin. Within a core network of 65 unique proteins, we captured all known components of these complexes and novel protein associations, especially in the Uri/Prefoldin complex. Finally, we constructed a probabilistic human interaction network composed of 557 protein pairs.
    Type of Medium: Online Resource
    ISSN: 0027-8424 , 1091-6490
    RVK:
    RVK:
    Language: English
    Publisher: Proceedings of the National Academy of Sciences
    Publication Date: 2008
    detail.hit.zdb_id: 209104-5
    detail.hit.zdb_id: 1461794-8
    SSG: 11
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    In: Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, Vol. 106, No. 39 ( 2009-09-29), p. 16776-16781
    Abstract: Mucosal dendritic cells have been implicated in the capture, storage, and transmission of HIV to CD4 + T cells as well as in the promotion of HIV replication in activated CD4 + T cells during the cognate T-cell and DC interaction. We report that HIV induces human genital mucosal epithelial cells to produce thymic stromal lymphopoietin (TSLP) via activation of the NFκB signaling pathway. The TSLP secreted by HIV exposed epithelial cells activated DC, which promoted proliferation and HIV-1 replication of co-cultured autologous CD4 + T cells. In rhesus macaques, we observed dramatic increases in TSLP expression concurrent with an increase in viral replication in the vaginal tissues within the first 2 weeks after vaginal SIV exposure. These data suggest that HIV-mediated TSLP production by mucosal epithelial cells is a critical trigger for DC-mediated amplification of HIV-infection in activated CD4 + T cells. The cross talk between mucosal epithelial cells and DC, mediated by HIV-induced TSLP, may be an important mechanism for the high rate of HIV infection in women through the vaginal mucosa.
    Type of Medium: Online Resource
    ISSN: 0027-8424 , 1091-6490
    RVK:
    RVK:
    Language: English
    Publisher: Proceedings of the National Academy of Sciences
    Publication Date: 2009
    detail.hit.zdb_id: 209104-5
    detail.hit.zdb_id: 1461794-8
    SSG: 11
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Online Resource
    Online Resource
    Proceedings of the National Academy of Sciences ; 2006
    In:  Proceedings of the National Academy of Sciences Vol. 103, No. 27 ( 2006-07-05), p. 10186-10191
    In: Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, Vol. 103, No. 27 ( 2006-07-05), p. 10186-10191
    Abstract: Twelve zeolitic imidazolate frameworks (ZIFs; termed ZIF-1 to -12) have been synthesized as crystals by copolymerization of either Zn(II) (ZIF-1 to -4, -6 to -8, and -10 to -11) or Co(II) (ZIF-9 and -12) with imidazolate-type links. The ZIF crystal structures are based on the nets of seven distinct aluminosilicate zeolites: tetrahedral Si(Al) and the bridging O are replaced with transition metal ion and imidazolate link, respectively. In addition, one example of mixed-coordination imidazolate of Zn(II) and In(III) (ZIF-5) based on the garnet net is reported. Study of the gas adsorption and thermal and chemical stability of two prototypical members, ZIF-8 and -11, demonstrated their permanent porosity (Langmuir surface area = 1,810 m 2 /g), high thermal stability (up to 550°C), and remarkable chemical resistance to boiling alkaline water and organic solvents.
    Type of Medium: Online Resource
    ISSN: 0027-8424 , 1091-6490
    RVK:
    RVK:
    Language: English
    Publisher: Proceedings of the National Academy of Sciences
    Publication Date: 2006
    detail.hit.zdb_id: 209104-5
    detail.hit.zdb_id: 1461794-8
    SSG: 11
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...