GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Journal of Information Science, SAGE Publications, Vol. 32, No. 6 ( 2006-12), p. 525-538
    Abstract: This paper presents a model for measuring intellectual capital (IC) within small and medium-sized enterprises (SMEs) in correlation with the key factors for the successful implementation of knowledge management (KM). Most of the existing IC measurement models are intended to cover general aspects. The kernel of these models could be customized/extended to handle more specific aspects, like KM. The focus of this study is the integration between an IC measurement model and the key factors for successful implementing of KM. The paper identifies, analyses and compares IC elements that are relevant for SMEs and how they can be linked with the IC measurement methods for determining if a company is ready for KM. For this purpose, a general IC measurement model is taken as reference for the study.
    Type of Medium: Online Resource
    ISSN: 0165-5515 , 1741-6485
    RVK:
    Language: English
    Publisher: SAGE Publications
    Publication Date: 2006
    detail.hit.zdb_id: 439125-1
    detail.hit.zdb_id: 2025062-9
    SSG: 24,1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    Society for Neuroscience ; 2006
    In:  The Journal of Neuroscience Vol. 26, No. 51 ( 2006-12-20), p. 13297-13310
    In: The Journal of Neuroscience, Society for Neuroscience, Vol. 26, No. 51 ( 2006-12-20), p. 13297-13310
    Abstract: The mechanisms that diversify adult interneurons from a few pools of embryonic neurons are unknown. Renshaw cells, Ia inhibitory interneurons (IaINs), and possibly other types of mammalian spinal interneurons have common embryonic origins within the V1 group. However, in contrast to IaINs and other V1-derived interneurons, adult Renshaw cells receive motor axon synapses and lack proprioceptive inputs. Here, we investigated how this specific pattern of connectivity emerges during the development of Renshaw cells. Tract tracing and immunocytochemical markers [parvalbumin and vesicular glutamate transporter 1 (VGLUT1)] showed that most embryonic (embryonic day 18) Renshaw cells lack dorsal root inputs, but more than half received dorsal root synapses by postnatal day 0 (P0) and this input spread to all Renshaw cells by P10–P15. Electrophysiological recordings in neonates indicated that this input is functional and evokes Renshaw cell firing. VGLUT1-IR bouton density on Renshaw cells increased until P15 but thereafter decreased because of limited synapse proliferation coupled with the enlargement of Renshaw cell dendrites. In parallel, Renshaw cell postsynaptic densities apposed to VGLUT1-IR synapses became smaller in adult compared with P15. In contrast, vesicular acetylcholine transporter-IR motor axon synapses contact embryonic Renshaw cells and proliferate postnatally matching Renshaw cell growth. Like other V1 neurons, Renshaw cells are thus competent to receive sensory synapses. However, after P15, these sensory inputs appear deselected through arrested proliferation and synapse weakening. Thus, Renshaw cells shift from integrating sensory and motor inputs in neonates to predominantly motor inputs in adult. Similar synaptic weight shifts on interneurons may be involved in the maturation of motor reflexes and locomotor circuitry.
    Type of Medium: Online Resource
    ISSN: 0270-6474 , 1529-2401
    Language: English
    Publisher: Society for Neuroscience
    Publication Date: 2006
    detail.hit.zdb_id: 1475274-8
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    Oxford University Press (OUP) ; 2005
    In:  Brain Vol. 128, No. 9 ( 2005-09-01), p. 2175-2188
    In: Brain, Oxford University Press (OUP), Vol. 128, No. 9 ( 2005-09-01), p. 2175-2188
    Type of Medium: Online Resource
    ISSN: 1460-2156 , 0006-8950
    RVK:
    Language: English
    Publisher: Oxford University Press (OUP)
    Publication Date: 2005
    detail.hit.zdb_id: 1474117-9
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Online Resource
    Online Resource
    Proceedings of the National Academy of Sciences ; 2005
    In:  Proceedings of the National Academy of Sciences Vol. 102, No. 20 ( 2005-05-17), p. 7344-7349
    In: Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, Vol. 102, No. 20 ( 2005-05-17), p. 7344-7349
    Abstract: Mammalian spinal motoneurons are considered to be output elements of the spinal cord that generate exclusively cholinergic actions on Renshaw cells, their intraspinal synaptic targets. Here, we show that antidromic stimulation of motor axons evokes depolarizing monosynaptic potentials in Renshaw cells that are depressed, but not abolished, by cholinergic antagonists. This residual potential was abolished by 2-amino-5-phosphonovaleric acid and 6-cyano-7-nitroquinoxaline-2,3-dione. In the presence of cholinergic antagonists, motor axon stimulation triggered locomotor-like activity that was blocked by 2-amino-5-phosphonovaleric acid. Some cholinergic motoneuronal terminals on both Renshaw cells and motoneurons were enriched in glutamate, but none expressed vesicular glutamate transporters. Our results raise the possibility that motoneurons release an excitatory amino acid in addition to acetylcholine and that they may be more directly involved in the genesis of mammalian locomotion than previously believed.
    Type of Medium: Online Resource
    ISSN: 0027-8424 , 1091-6490
    RVK:
    RVK:
    Language: English
    Publisher: Proceedings of the National Academy of Sciences
    Publication Date: 2005
    detail.hit.zdb_id: 209104-5
    detail.hit.zdb_id: 1461794-8
    SSG: 11
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Online Resource
    Online Resource
    Proceedings of the National Academy of Sciences ; 2005
    In:  Proceedings of the National Academy of Sciences Vol. 102, No. 14 ( 2005-04-05), p. 5020-5025
    In: Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, Vol. 102, No. 14 ( 2005-04-05), p. 5020-5025
    Abstract: In voltage-dependent channels, positive charges contained within the S4 domain are the voltage-sensing elements. The “voltage-sensor paddle” gating mechanism proposed for the KvAP K + channel has been the subject of intense discussion regarding its general applicability to the family of voltage-gated channels. In this model, the voltage sensor composed of the S3b and the S4 segment shuttles across the lipid bilayer during channel activation. Guided by this mechanism, we assessed here the accessibility of residues in the S3 segment of the Shaker K + channel by using cysteine-scanning mutagenesis. Mutants expressed robust K + currents in Xenopus oocytes and reacted with methanethiosulfonate ethyltrimethylammonium in both closed and open conformations of the channel. Because Shaker has a long S3–S4 linker segment, we generated a deletion mutant with only three residues to emulate the KvAP structure. In this short linker mutant, all of the tested residues in the S3b were accessible to methanethiosulfonate ethyltrimethylammonium in both closed and open conformations. Because the S3b moves together with the S4 domain in the paddle model, we tested the effects of deleting two negative charges or adding a positive charge to this region of the channel. We found that altering the S3b net charge does not modify the total gating charge involved in channel activation. We conclude that the S3b segment is always exposed to the external milieu of the Shaker K + channel. Our results are incompatible with any model involving a large membrane displacement of segment S3b.
    Type of Medium: Online Resource
    ISSN: 0027-8424 , 1091-6490
    RVK:
    RVK:
    Language: English
    Publisher: Proceedings of the National Academy of Sciences
    Publication Date: 2005
    detail.hit.zdb_id: 209104-5
    detail.hit.zdb_id: 1461794-8
    SSG: 11
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    Online Resource
    Online Resource
    Society for Neuroscience ; 2005
    In:  The Journal of Neuroscience Vol. 25, No. 2 ( 2005-01-12), p. 417-429
    In: The Journal of Neuroscience, Society for Neuroscience, Vol. 25, No. 2 ( 2005-01-12), p. 417-429
    Abstract: Renshaw cells receive a high density of inhibitory synapses characterized by large postsynaptic gephyrin clusters and mixed glycinergic/GABAergic inhibitory currents with large peak amplitudes and long decays. These properties appear adapted to increase inhibitory efficacy over Renshaw cells and mature postnatally by mechanisms that are unknown. We tested the hypothesis that heterosynaptic influences from excitatory motor axon inputs modulate the development of inhibitory synapses on Renshaw cells. Thus, tetanus (TeNT) and botulinum neurotoxin A (BoNT-A) were injected intramuscularly at postnatal day 5 (P5) to, respectively, elevate or reduce motor axon firing activity for ∼2 weeks. After TeNT injections, the average gephyrin cluster areas on Renshaw cells increased by 18.4% at P15 and 28.4% at P20 and decreased after BoNT-A injections by 17.7% at P15 and 19.9% at P20. The average size differences resulted from changes in the proportions of small and large gephyrin clusters. Whole-cell recordings in P9-P15 Renshaw cells after P5 TeNT injections showed increases in the peak amplitude of glycinergic miniature postsynaptic currents (mPSCs) and the fast component of mixed (glycinergic/GABAergic) mPSCs compared with controls (60.9% and 78.9%, respectively). GABAergic mPSCs increased in peak amplitude to a smaller extent (45.8%). However, because of the comparatively longer decays of synaptic GABAergic currents, total current transfer changes after TeNT were similar for synaptic glycine and GABA A receptors (56 vs 48.9% increases, respectively). We concluded that motor axon excitatory synaptic activity modulates the development of inhibitory synapse properties on Renshaw cells, influencing recruitment of postsynaptic gephyrin and glycine receptors and, to lesser extent, GABA A receptors.
    Type of Medium: Online Resource
    ISSN: 0270-6474 , 1529-2401
    Language: English
    Publisher: Society for Neuroscience
    Publication Date: 2005
    detail.hit.zdb_id: 1475274-8
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Online Resource
    Online Resource
    Society for Neuroscience ; 2005
    In:  The Journal of Neuroscience Vol. 25, No. 8 ( 2005-02-23), p. 2010-2023
    In: The Journal of Neuroscience, Society for Neuroscience, Vol. 25, No. 8 ( 2005-02-23), p. 2010-2023
    Abstract: Renshaw cells (RCs) receive excitatory inputs from motoneurons to which then they inhibit. The gain of this spinal recurrent inhibitory circuit is modulated by inhibitory synapses on RCs. Inhibitory synapses on RCs mature postnatally, developing unusually large postsynaptic gephyrin clusters that colocalize glycine and GABA A receptors. We hypothesized that these features potentiate inhibitory currents in RCs. Thus, we analyzed glycinergic and GABAergic “inhibitory” miniature postsynaptic currents (mPSCs) in neonatal [postnatal day 1 (P1) to P5] and mature (P9-P15) RCs and compared them to other ventral interneurons (non-RCs). Recorded neurons were Neurobiotin filled and identified as RCs or non-RCs using post hoc immunohistochemical criteria. Glycinergic, GABAergic, and mixed glycine/GABA mPSCs matured differently in RCs and non-RCs. In RCs, glycinergic and GABA A mPSC peak amplitudes increased 230 and 45%, respectively, from P1-P5 to P9-P15, whereas in non-RCs, glycinergic peak amplitudes changed little and GABA A amplitudes decreased. GABA A mPSCs were slower in RCs (P1-P5, τ = 58 ms; P9-P15, τ = 43 ms) compared with non-RCs (P1-P5, τ = 27 ms; P9-P15, τ = 14 ms). Thus, fast glycinergic currents dominated “mixed” mPSC peak amplitudes in mature RCs, and GABA A currents dominated their long decays. In non-RCs, GABAergic and mixed events had shorter durations, and their frequencies decreased with development. Functional maturation of inhibitory synapses on RCs correlates well with increased glycine receptor recruitment to large gephyrin patches, colocalization with α3/α5-containing GABA A receptors, and maintenance of GABA/glycine corelease. As a result, charge transfer in GABA, glycine, or mixed mPSCs was larger in mature RCs than in non-RCs, suggesting RCs receive potent inhibitory synapses.
    Type of Medium: Online Resource
    ISSN: 0270-6474 , 1529-2401
    Language: English
    Publisher: Society for Neuroscience
    Publication Date: 2005
    detail.hit.zdb_id: 1475274-8
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Online Resource
    Online Resource
    Wiley ; 2007
    In:  Journal of the American Society for Information Science and Technology Vol. 58, No. 14 ( 2007-12), p. 2167-2179
    In: Journal of the American Society for Information Science and Technology, Wiley, Vol. 58, No. 14 ( 2007-12), p. 2167-2179
    Abstract: This study proposes a new methodology that allows for the generation of scientograms of major scientific domains, constructed on the basis of cocitation of Institute of Scientific Information categories, and pruned using PathfinderNetwork, with a layout determined by algorithms of the spring‐embedder type (Kamada–Kawai), then corroborated structurally by factor analysis. We present the complete scientogram of the world for the Year 2002. It integrates the natural sciences, the social sciences, and arts and humanities. Its basic structure and the essential relationships therein are revealed, allowing us to simultaneously analyze the macrostructure, microstructure, and marrow of worldwide scientific output.
    Type of Medium: Online Resource
    ISSN: 1532-2882 , 1532-2890
    URL: Issue
    Language: English
    Publisher: Wiley
    Publication Date: 2007
    detail.hit.zdb_id: 2756770-9
    detail.hit.zdb_id: 2755710-8
    detail.hit.zdb_id: 2052781-0
    detail.hit.zdb_id: 2038742-8
    SSG: 24,1
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...