GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, Vol. 111, No. 43 ( 2014-10-28), p. 15544-15549
    Abstract: Previous studies have established that a subset of head and neck tumors contains human papillomavirus (HPV) sequences and that HPV-driven head and neck cancers display distinct biological and clinical features. HPV is known to drive cancer by the actions of the E6 and E7 oncoproteins, but the molecular architecture of HPV infection and its interaction with the host genome in head and neck cancers have not been comprehensively described. We profiled a cohort of 279 head and neck cancers with next generation RNA and DNA sequencing and show that 35 (12.5%) tumors displayed evidence of high-risk HPV types 16, 33, or 35. Twenty-five cases had integration of the viral genome into one or more locations in the human genome with statistical enrichment for genic regions. Integrations had a marked impact on the human genome and were associated with alterations in DNA copy number, mRNA transcript abundance and splicing, and both inter- and intrachromosomal rearrangements. Many of these events involved genes with documented roles in cancer. Cancers with integrated vs. nonintegrated HPV displayed different patterns of DNA methylation and both human and viral gene expressions. Together, these data provide insight into the mechanisms by which HPV interacts with the human genome beyond expression of viral oncoproteins and suggest that specific integration events are an integral component of viral oncogenesis.
    Type of Medium: Online Resource
    ISSN: 0027-8424 , 1091-6490
    RVK:
    RVK:
    Language: English
    Publisher: Proceedings of the National Academy of Sciences
    Publication Date: 2014
    detail.hit.zdb_id: 209104-5
    detail.hit.zdb_id: 1461794-8
    SSG: 11
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    Society for Neuroscience ; 2013
    In:  The Journal of Neuroscience Vol. 33, No. 12 ( 2013-03-20), p. 5175-5181
    In: The Journal of Neuroscience, Society for Neuroscience, Vol. 33, No. 12 ( 2013-03-20), p. 5175-5181
    Abstract: In Drosophila , aversive olfactory memory is believed to be stored in a prominent brain structure, the mushroom body (MB), and two pairs of MB intrinsic neurons, the dorsal paired medial (DPM) and the anterior paired lateral (APL) neurons, are found to regulate the consolidation of middle-term memory (MTM). Here we report that another prominent brain structure, the ellipsoid body (EB), is also involved in the modulation of olfactory MTM. Activating EB R2/R4m neurons does not affect the learning index, but specifically eliminates anesthesia-sensitive memory (ASM), the labile component of olfactory MTM. We further demonstrate that approximately two-thirds of these EB neurons are GABAergic and are responsible for the suppression of ASM. Using GRASP (GFP reconstitution across synaptic partners), we reveal potential synaptic connections between the EB and MB in regions covering both the presynaptic and postsynaptic sites of EB neurons, suggesting the presence of bidirectional connections between these two important brain structures. These findings suggest the existence of direct connections between the MB and EB, and provide new insights into the neural circuit basis for olfactory labile memory in Drosophila .
    Type of Medium: Online Resource
    ISSN: 0270-6474 , 1529-2401
    Language: English
    Publisher: Society for Neuroscience
    Publication Date: 2013
    detail.hit.zdb_id: 1475274-8
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Science, American Association for the Advancement of Science (AAAS), Vol. 338, No. 6114 ( 2012-12-21), p. 1576-1582
    Abstract: The ATLAS detector measured several characteristic decay products of the standard model Higgs boson, allowing its mass to be determined.
    Type of Medium: Online Resource
    ISSN: 0036-8075 , 1095-9203
    RVK:
    RVK:
    Language: English
    Publisher: American Association for the Advancement of Science (AAAS)
    Publication Date: 2012
    detail.hit.zdb_id: 128410-1
    detail.hit.zdb_id: 2066996-3
    detail.hit.zdb_id: 2060783-0
    SSG: 11
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Online Resource
    Online Resource
    Wissenschaftliche Verlagsgesellschaft mbH ; 2011
    In:  Acta Acustica united with Acustica Vol. 97, No. 6 ( 2011-11-01), p. 1034-1040
    In: Acta Acustica united with Acustica, Wissenschaftliche Verlagsgesellschaft mbH, Vol. 97, No. 6 ( 2011-11-01), p. 1034-1040
    Type of Medium: Online Resource
    ISSN: 1610-1928
    Language: English
    Publisher: Wissenschaftliche Verlagsgesellschaft mbH
    Publication Date: 2011
    detail.hit.zdb_id: 119-3
    detail.hit.zdb_id: 2078656-6
    SSG: 7,11
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Online Resource
    Online Resource
    Proceedings of the National Academy of Sciences ; 2013
    In:  Proceedings of the National Academy of Sciences Vol. 110, No. 9 ( 2013-02-26)
    In: Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, Vol. 110, No. 9 ( 2013-02-26)
    Abstract: In the present study, we found that the level of BMP4 in human white adipose tissue is inversely associated with fat mass. Mice with overexpressed or absent BMP4 in white adipose tissue revealed that BMP4 induces brown fat-like changes in white adipose tissue in addition to altering metabolism and insulin sensitivity. Therefore, we showed that BMP4-mediated expression of PGC1α proceeds through the p38/MAPK/ATF2 pathway ( Fig. P1 ). These findings indicate that manipulation of BMP4 expression in white adipose tissue may serve as a therapeutic target for the prevention and/or treatment of obesity and its metabolic complications. We then explored the molecular mechanism of BMP4-induced brown adipose-like changes in white adipose tissue and found that peroxisome proliferator-activated receptor γ coactivator α (PGC1α) was the key regulator during the program. We further demonstrated that activation of the p38/MAPK/activating transcription factor 2 (ATF2) pathway and PGC1α expression by BMP4 play an important role in the induction of white adipose tissue into brown adipose-like tissue. Two mouse models were used in the present study: the BMP4 transgenic mouse in which BMP4 was specifically overexpressed and a knockout mouse in which BMP4 was specifically knocked out in adipose tissue. We assessed the phenotype of adipose tissue and the systematical metabolic alteration in these mice. Our findings revealed that the forced expression of BMP4 in white adipose tissue promotes the acquisition of brown fat-like characteristics, including decreased adipocyte size and lipid droplets, increased mitochondrial biogenesis, and the increased expression of fatty acid-oxidizing genes. Changes in adipose tissue resulted in a systematical increase in basal respiratory rate, increased insulin sensitivity, and decreased blood fat. Similarly, cell culture experiments revealed that treatment with BMP4 during 3T3-L1 adipocyte differentiation leads to a gene-expression profile similar to that of brown fat cells. More importantly, overexpression of BMP4 in white adipose tissue improves insulin sensitivity and protects against diet-induced obesity and diabetes. Conversely, BMP4-deficient mice exhibit enlarged white adipocyte morphology, increased blood fat, and impaired insulin sensitivity. These results reveal an interesting role for BMP4 in the regulation of adipogenesis and metabolism. White adipose tissue stores energy in the form of triglycerides. However, the increases in cell division or cell size (i.e., hyperplasia and hypertrophy, respectively) of adipocytes that accompany the excessive accumulation of body fat are associated with insulin resistance, type 2 diabetes, and an inflammatory response ( 1 ). In contrast, brown adipose tissue dissipates energy as heat by means of mitochondrial uncoupling protein 1. Promotion of brown adipose tissue activity helps prevent genetic obesity in rodents ( 2 ). Recent studies have identified metabolically active fat cells, known as “brite” (brown-in-white) or “beige” adipocytes, in white fat deposits in both mice and humans ( 3 ). The number of active brown adipose tissue cells is inversely correlated with BMI in humans ( 4 ). Therefore, the identification of factors that induce brown-like fat cells in white adipose tissue could suggest an approach to preventing and/or treating obesity and its metabolic complications. We previously found that BMP4 induces multipotent C3H10T1/2 stem cells to become preadipocytes ( 5 ). Our present findings reveal that the level of BMP4 in human white adipose tissue is inversely associated with BMI, and we explore whether BMP4 regulates the terminal differentiation and metabolic function of adipocytes. Two types of fat storage cells, known as “adipocytes,” coordinately regulate energy balance in humans and other mammals. White adipocytes are specialized to store energy, whereas brown adipocytes produce heat. Promotion of brown adipocyte activity in white adipose tissue helps prevent obesity and its metabolic complications. Bone morphogenetic protein 4 (BMP4) is a member of the bone morphogenetic protein family, which is part of the TGF-β superfamily. BMP4 is essential for embryonic formation and is involved in the development of tissues such as bone and muscle, teeth, and neurons. In the present study, we found that the level of BMP4 in human white adipose tissue is inversely associated with body mass index (BMI). The BMP4 protein also was shown to induce brown adipose tissue-like changes in white adipose tissue, and to increase glucose and energy expenditure in mice models.
    Type of Medium: Online Resource
    ISSN: 0027-8424 , 1091-6490
    RVK:
    RVK:
    Language: English
    Publisher: Proceedings of the National Academy of Sciences
    Publication Date: 2013
    detail.hit.zdb_id: 209104-5
    detail.hit.zdb_id: 1461794-8
    SSG: 11
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    In: The Journal of Neuroscience, Society for Neuroscience, Vol. 31, No. 6 ( 2011-02-09), p. 2313-2320
    Abstract: Amyloid-β (Aβ) peptide-binding alcohol dehydrogenase (ABAD), an enzyme present in neuronal mitochondria, exacerbates Aβ-induced cell stress. The interaction of ABAD with Aβ exacerbates Aβ-induced mitochondrial and neuronal dysfunction. Here, we show that inhibition of the ABAD-Aβ interaction, using a decoy peptide (DP) in vitro and in vivo , protects against aberrant mitochondrial and neuronal function and improves spatial learning/memory. Intraperitoneal administration of ABAD-DP [fused to the transduction of human immunodeficiency virus 1-transactivator (Tat) protein and linked to the mitochondrial targeting sequence (Mito) (TAT-mito-DP) to transgenic APP mice (Tg mAPP)] blocked formation of ABAD-Aβ complex in mitochondria, increased oxygen consumption and enzyme activity associated with the mitochondrial respiratory chain, attenuated mitochondrial oxidative stress, and improved spatial memory. Similar protective effects were observed in Tg mAPP mice overexpressing neuronal ABAD decoy peptide (Tg mAPP/mito-ABAD). Notably, inhibition of the ABAD-Aβ interaction significantly reduced mitochondrial Aβ accumulation. In parallel, the activity of mitochondrial Aβ-degrading enzyme PreP (presequence peptidase) was enhanced in Tg mAPP mitochondria expressing the ABAD decoy peptide. These data indicate that segregating ABAD from Aβ protects mitochondria/neurons from Aβ toxicity; thus, ABAD-Aβ interaction is an important mechanism underlying Aβ-mediated mitochondrial and neuronal perturbation. Inhibitors of ABAD-Aβ interaction may hold promise as targets for the prevention and treatment of Alzheimer's disease.
    Type of Medium: Online Resource
    ISSN: 0270-6474 , 1529-2401
    Language: English
    Publisher: Society for Neuroscience
    Publication Date: 2011
    detail.hit.zdb_id: 1475274-8
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Online Resource
    Online Resource
    Proceedings of the National Academy of Sciences ; 2012
    In:  Proceedings of the National Academy of Sciences Vol. 109, No. 32 ( 2012-08-07), p. 12911-12915
    In: Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, Vol. 109, No. 32 ( 2012-08-07), p. 12911-12915
    Abstract: At the United Nations Framework Convention on Climate Change Conference in Cancun, in November 2010, the Heads of State reached an agreement on the aim of limiting the global temperature rise to 2 °C relative to preindustrial levels. They recognized that long-term future warming is primarily constrained by cumulative anthropogenic greenhouse gas emissions, that deep cuts in global emissions are required, and that action based on equity must be taken to meet this objective. However, negotiations on emission reduction among countries are increasingly fraught with difficulty, partly because of arguments about the responsibility for the ongoing temperature rise. Simulations with two earth-system models (NCAR/CESM and BNU-ESM) demonstrate that developed countries had contributed about 60–80%, developing countries about 20–40%, to the global temperature rise, upper ocean warming, and sea-ice reduction by 2005. Enacting pledges made at Cancun with continuation to 2100 leads to a reduction in global temperature rise relative to business as usual with a 1/3–2/3 (CESM 33–67%, BNU-ESM 35–65%) contribution from developed and developing countries, respectively. To prevent a temperature rise by 2 °C or more in 2100, it is necessary to fill the gap with more ambitious mitigation efforts.
    Type of Medium: Online Resource
    ISSN: 0027-8424 , 1091-6490
    RVK:
    RVK:
    Language: English
    Publisher: Proceedings of the National Academy of Sciences
    Publication Date: 2012
    detail.hit.zdb_id: 209104-5
    detail.hit.zdb_id: 1461794-8
    SSG: 11
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Online Resource
    Online Resource
    Proceedings of the National Academy of Sciences ; 2010
    In:  Proceedings of the National Academy of Sciences Vol. 107, No. 43 ( 2010-10-26), p. 18670-18675
    In: Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, Vol. 107, No. 43 ( 2010-10-26), p. 18670-18675
    Abstract: Synaptic dysfunction and the loss of synapses are early pathological features of Alzheimer's disease (AD). Synapses are sites of high energy demand and extensive calcium fluctuations; accordingly, synaptic transmission requires high levels of ATP and constant calcium fluctuation. Thus, synaptic mitochondria are vital for maintenance of synaptic function and transmission through normal mitochondrial energy metabolism, distribution and trafficking, and through synaptic calcium modulation. To date, there has been no extensive analysis of alterations in synaptic mitochondria associated with amyloid pathology in an amyloid β (Aβ)-rich milieu. Here, we identified differences in mitochondrial properties and function of synaptic vs. nonsynaptic mitochondrial populations in the transgenic mouse brain, which overexpresses the human mutant form of amyloid precursor protein and Aβ. Compared with nonsynaptic mitochondria, synaptic mitochondria showed a greater degree of age-dependent accumulation of Aβ and mitochondrial alterations. The synaptic mitochondrial pool of Aβ was detected at an age as young as 4 mo, well before the onset of nonsynaptic mitochondrial and extensive extracellular Aβ accumulation. Aβ-insulted synaptic mitochondria revealed early deficits in mitochondrial function, as shown by increased mitochondrial permeability transition, decline in both respiratory function and activity of cytochrome c oxidase, and increased mitochondrial oxidative stress. Furthermore, a low concentration of Aβ (200 nM) significantly interfered with mitochondrial distribution and trafficking in axons. These results demonstrate that synaptic mitochondria, especially Aβ-rich synaptic mitochondria, are more susceptible to Aβ-induced damage, highlighting the central importance of synaptic mitochondrial dysfunction relevant to the development of synaptic degeneration in AD.
    Type of Medium: Online Resource
    ISSN: 0027-8424 , 1091-6490
    RVK:
    RVK:
    Language: English
    Publisher: Proceedings of the National Academy of Sciences
    Publication Date: 2010
    detail.hit.zdb_id: 209104-5
    detail.hit.zdb_id: 1461794-8
    SSG: 11
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Online Resource
    Online Resource
    Society for Neuroscience ; 2014
    In:  The Journal of Neuroscience Vol. 34, No. 36 ( 2014-09-03), p. 11897-11912
    In: The Journal of Neuroscience, Society for Neuroscience, Vol. 34, No. 36 ( 2014-09-03), p. 11897-11912
    Abstract: The failure of past efforts to develop effective stroke treatments is at least partially because these treatments often interfered with essential physiological functions, even though they are targeted toward pathophysiological events, such as inflammation, excitotoxicity, and oxidative stress. Thus, the direct targeting of endogenous neuroprotective or destructive elements holds promise as a potential new approach to treating this devastating condition. Interferon regulatory factor 9 (IRF9), a transcription factor that regulates innate immune responses, has been implicated in neurological pathology. Here, we provide new evidence that IRF9 directly mediates neuronal death in male mice. In response to ischemia/reperfusion (I/R), IRF9 accumulated in neurons. IRF9 deficiency markedly mitigated both poststroke neuronal death and neurological deficits, whereas the neuron-specific overexpression of IRF9 sensitized neurons to death. The histone deacetylase Sirt1 was identified as a novel negative transcriptional target of IRF9 both in vivo and in vitro . IRF9 inhibits Sirt1 deacetylase activity, culminating in the acetylation and activation of p53-mediated cell death signaling. Importantly, both the genetic and pharmacological manipulation of Sirt1 effectively counteracted the pathophysiological effects of IRF9 on stroke outcome. These findings indicate that, rather than activating a delayed innate immune response, IRF9 directly activates neuronal death signaling pathways through the downregulation of Sirt1 deacetylase in response to acute I/R stress.
    Type of Medium: Online Resource
    ISSN: 0270-6474 , 1529-2401
    Language: English
    Publisher: Society for Neuroscience
    Publication Date: 2014
    detail.hit.zdb_id: 1475274-8
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Online Resource
    Online Resource
    IOP Publishing ; 2014
    In:  EPL (Europhysics Letters) Vol. 106, No. 5 ( 2014-06-01), p. 56002-
    In: EPL (Europhysics Letters), IOP Publishing, Vol. 106, No. 5 ( 2014-06-01), p. 56002-
    Type of Medium: Online Resource
    ISSN: 0295-5075 , 1286-4854
    Language: Unknown
    Publisher: IOP Publishing
    Publication Date: 2014
    detail.hit.zdb_id: 1465366-7
    detail.hit.zdb_id: 165776-8
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...