GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • de Waal, Robert M. W.  (2)
  • Linguistics  (2)
  • 1
    In: The Journal of Neuroscience, Society for Neuroscience, Vol. 31, No. 33 ( 2011-08-17), p. 11992-12000
    Abstract: More than 80% of Alzheimer's disease (AD) patients have some degree of cerebral amyloid angiopathy (CAA). In addition to arteries and veins, capillaries can also be affected. Capillary CAA (capCAA), rather than CAA in larger vessels, is associated with flame-like amyloid-beta (Aβ) deposits that may extend beyond the vessel wall and radiate into the neuropil, a phenomenon also known as “dyshoric angiopathy.” Aβ deposits in AD, parenchymal as well as (cap)CAA and dyshoric angiopathy, are associated with a local inflammatory reaction, including activation of microglial cells and astrocytes that, among others, produce cytokines and reactive oxygen species. This neuroinflammatory reaction may account for at least part of the cognitive decline. In previous studies we observed that small heat shock proteins (sHsps) are associated with Aβ deposits in AD. In this study the molecular chaperones Hsp20, HspB8 and HspB2B3 were found to colocalize with CAA and capCAA in AD brains. In addition, Hsp20, HspB8 and HspB2B3 colocalized with intercellular adhesion molecule 1 (ICAM-1) in capCAA-associated dyshoric angiopathy. Furthermore, we demonstrated that Hsp20, HspB8 and HspB2B3 induced production of interleukin 8, soluble ICAM-1 and monocyte chemoattractant protein 1 by human leptomeningeal smooth muscle cells and human brain astrocytes in vitro and that Hsp27 inhibited production of transforming growth factor beta 1 and CD40 ligand. Our results suggest a central role for sHsps in the neuroinflammatory reaction in AD and CAA and thus in contributing to cognitive decline.
    Type of Medium: Online Resource
    ISSN: 0270-6474 , 1529-2401
    Language: English
    Publisher: Society for Neuroscience
    Publication Date: 2011
    detail.hit.zdb_id: 1475274-8
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    Society for Neuroscience ; 2005
    In:  The Journal of Neuroscience Vol. 25, No. 14 ( 2005-04-06), p. 3621-3627
    In: The Journal of Neuroscience, Society for Neuroscience, Vol. 25, No. 14 ( 2005-04-06), p. 3621-3627
    Abstract: The ϵ4 allele of apolipoprotein E (ApoE) is a risk factor for Alzheimer's disease (AD), whereas the ϵ2 allele may be relatively protective. Both alleles are risk factors for cerebral amyloid angiopathy (CAA)-related hemorrhages. CAA is associated with degeneration of smooth muscle cells and pericytes. Previously, we described that synthetic amyloid-β 1-40 peptide (Aβ 1-40 ) with the 22 Glu→ Gln “Dutch” mutation caused pericyte death in vitro by a mechanism that involves Aβ fibril-like assembly at the cell surface. It is known that ApoE binds to Aβ and may modify its biological activities. In the present study, we evaluated the effect of ApoE on Aβ-mediated toxicity of cerebrovascular cells. We observed that cultured cells with an ϵ4/ϵ4 genotype were more vulnerable to Aβ than cultures with an ϵ3/ϵ3 or ϵ3/ϵ4 genotype. The one cell culture with the ϵ2/ϵ3 genotype was relatively resistant to Aβ compared with other cultures. Furthermore, we observed a dose-dependent protective effect of native ApoE against Aβ-mediated toxicity of cerebrovascular cells and, in addition, ApoE ϵ2/ϵ3 cells secreted more ApoE protein compared with cells with other ApoE genotypes, in particular, compared with ϵ4/ϵ4 cells. Thus, the disparity between ApoE genotype and Aβ-mediated toxicity might be related to differences in the cellular capacity to secrete ApoE. The present data suggest that one mechanism by which ApoE may alter the risk for AD is a genotype-dependent regulation of Aβ cytotoxicity, possibly via variations in its secretion levels, whereby extracellular ApoE may bind to Aβ and thereby modify Aβ-mediated cell death.
    Type of Medium: Online Resource
    ISSN: 0270-6474 , 1529-2401
    Language: English
    Publisher: Society for Neuroscience
    Publication Date: 2005
    detail.hit.zdb_id: 1475274-8
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...