GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, Vol. 118, No. 28 ( 2021-07-13)
    Abstract: Forward genetic studies use meiotic mapping to adduce evidence that a particular mutation, normally induced by a germline mutagen, is causative of a particular phenotype. Particularly in small pedigrees, cosegregation of multiple mutations, occasional unawareness of mutations, and paucity of homozygotes may lead to erroneous declarations of cause and effect. We sought to improve the identification of mutations causing immune phenotypes in mice by creating Candidate Explorer (CE), a machine-learning software program that integrates 67 features of genetic mapping data into a single numeric score, mathematically convertible to the probability of verification of any putative mutation–phenotype association. At this time, CE has evaluated putative mutation–phenotype associations arising from screening damaging mutations in ∼55% of mouse genes for effects on flow cytometry measurements of immune cells in the blood. CE has therefore identified more than half of genes within which mutations can be causative of flow cytometric phenovariation in Mus musculus . The majority of these genes were not previously known to support immune function or homeostasis. Mouse geneticists will find CE data informative in identifying causative mutations within quantitative trait loci, while clinical geneticists may use CE to help connect causative variants with rare heritable diseases of immunity, even in the absence of linkage information. CE displays integrated mutation, phenotype, and linkage data, and is freely available for query online.
    Type of Medium: Online Resource
    ISSN: 0027-8424 , 1091-6490
    RVK:
    RVK:
    Language: English
    Publisher: Proceedings of the National Academy of Sciences
    Publication Date: 2021
    detail.hit.zdb_id: 209104-5
    detail.hit.zdb_id: 1461794-8
    SSG: 11
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Science, American Association for the Advancement of Science (AAAS), Vol. 364, No. 6440 ( 2019-05-10)
    Abstract: Precise control of Wnt signaling is necessary for immune system development. In this study, we detected severely impaired development of all lymphoid lineages in mice, resulting from an N -ethyl- N -nitrosourea–induced mutation in the limb region 1–like gene ( Lmbr1l ), which encodes a membrane-spanning protein with no previously described function in immunity. The interaction of LMBR1L with glycoprotein 78 (GP78) and ubiquitin-associated domain–containing protein 2 (UBAC2) attenuated Wnt signaling in lymphocytes by preventing the maturation of FZD6 and LRP6 through ubiquitination within the endoplasmic reticulum and by stabilizing “destruction complex” proteins. LMBR1L-deficient T cells exhibited hallmarks of Wnt/β-catenin activation and underwent apoptotic cell death in response to proliferative stimuli. LMBR1L has an essential function during lymphopoiesis and lymphoid activation, acting as a negative regulator of the Wnt/β-catenin pathway.
    Type of Medium: Online Resource
    ISSN: 0036-8075 , 1095-9203
    RVK:
    RVK:
    Language: English
    Publisher: American Association for the Advancement of Science (AAAS)
    Publication Date: 2019
    detail.hit.zdb_id: 128410-1
    detail.hit.zdb_id: 2066996-3
    detail.hit.zdb_id: 2060783-0
    SSG: 11
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, Vol. 119, No. 18 ( 2022-05-03)
    Abstract: Null mutations of spliceosome components or cofactors are homozygous lethal in eukaryotes, but viable hypomorphic mutations provide an opportunity to understand the physiological impact of individual splicing proteins. We describe a viable missense allele (F181I) of Rnps1 encoding an essential regulator of splicing and nonsense-mediated decay (NMD), identified in a mouse genetic screen for altered immune cell development. Homozygous mice displayed a stem cell–intrinsic defect in hematopoiesis of all lineages due to excessive apoptosis induced by tumor necrosis factor (TNF)–dependent death signaling. Numerous transcript splice variants containing retained introns and skipped exons were detected at elevated frequencies in Rnps1 F181I/F181I splenic CD8 + T cells and hematopoietic stem cells (HSCs), but NMD appeared normal. Strikingly, Tnf knockout rescued all hematopoietic cells to normal or near-normal levels in Rnps1 F181I/F181I mice and dramatically reduced intron retention in Rnps1 F181I/F181I CD8 + T cells and HSCs. Thus, RNPS1 is necessary for accurate splicing, without which disinhibited TNF signaling triggers hematopoietic cell death.
    Type of Medium: Online Resource
    ISSN: 0027-8424 , 1091-6490
    RVK:
    RVK:
    Language: English
    Publisher: Proceedings of the National Academy of Sciences
    Publication Date: 2022
    detail.hit.zdb_id: 209104-5
    detail.hit.zdb_id: 1461794-8
    SSG: 11
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    In: Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, Vol. 115, No. 49 ( 2018-12-04)
    Abstract: The SMCR8-WDR41-C9ORF72 complex is a regulator of autophagy and lysosomal function. Autoimmunity and inflammatory disease have been ascribed to loss-of-function mutations of Smcr8 or C9orf72 in mice. In humans, autoimmunity has been reported to precede amyotrophic lateral sclerosis caused by mutations of C9ORF72 . However, the cellular and molecular mechanisms underlying autoimmunity and inflammation caused by C9ORF72 or SMCR8 deficiencies remain unknown. Here, we show that splenomegaly, lymphadenopathy, and activated circulating T cells observed in Smcr8 −/− mice were rescued by triple knockout of the endosomal Toll-like receptors (TLRs) TLR3, TLR7, and TLR9. Myeloid cells from Smcr8 −/− mice produced excessive inflammatory cytokines in response to endocytosed TLR3, TLR7, or TLR9 ligands administered in the growth medium and in response to TLR2 or TLR4 ligands internalized by phagocytosis. These defects likely stem from prolonged TLR signaling caused by accumulation of LysoTracker-positive vesicles and by delayed phagosome maturation, both of which were observed in Smcr8 −/− macrophages. Smcr8 −/− mice also showed elevated susceptibility to dextran sodium sulfate-induced colitis, which was not associated with increased TLR3, TLR7, or TLR9 signaling. Deficiency of WDR41 phenocopied loss of SMCR8. Our findings provide evidence that excessive endosomal TLR signaling resulting from prolonged ligand–receptor contact causes inflammatory disease in SMCR8-deficient mice.
    Type of Medium: Online Resource
    ISSN: 0027-8424 , 1091-6490
    RVK:
    RVK:
    Language: English
    Publisher: Proceedings of the National Academy of Sciences
    Publication Date: 2018
    detail.hit.zdb_id: 209104-5
    detail.hit.zdb_id: 1461794-8
    SSG: 11
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Online Resource
    Online Resource
    Proceedings of the National Academy of Sciences ; 2020
    In:  Proceedings of the National Academy of Sciences Vol. 117, No. 9 ( 2020-03-03), p. 4894-4901
    In: Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, Vol. 117, No. 9 ( 2020-03-03), p. 4894-4901
    Abstract: γ-secretase is an intramembrane protease complex that catalyzes the proteolytic cleavage of amyloid precursor protein and Notch. Impaired γ-secretase function is associated with the development of Alzheimer’s disease and familial acne inversa in humans. In a forward genetic screen of mice with N -ethyl- N -nitrosourea-induced mutations for defects in adaptive immunity, we identified animals within a single pedigree exhibiting both hypopigmentation of the fur and diminished T cell-independent (TI) antibody responses. The causative mutation was in Ncstn , an essential gene encoding the protein nicastrin (NCSTN), a member of the γ-secretase complex that functions to recruit substrates for proteolysis. The missense mutation severely limits the glycosylation of NCSTN to its mature form and impairs the integrity of the γ-secretase complex as well as its catalytic activity toward its substrate Notch, a critical regulator of B cell and T cell development. Strikingly, however, this missense mutation affects B cell development but not thymocyte or T cell development. The Ncstn allele uncovered in these studies reveals an essential requirement for NCSTN during the type 2 transitional-marginal zone precursor stage and peritoneal B-1 B cell development, the TI antibody response, fur pigmentation, and intestinal homeostasis in mice.
    Type of Medium: Online Resource
    ISSN: 0027-8424 , 1091-6490
    RVK:
    RVK:
    Language: English
    Publisher: Proceedings of the National Academy of Sciences
    Publication Date: 2020
    detail.hit.zdb_id: 209104-5
    detail.hit.zdb_id: 1461794-8
    SSG: 11
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    In: Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, Vol. 117, No. 15 ( 2020-04-14), p. 8563-8572
    Abstract: The small GTPase RABL3 is an oncogene of unknown physiological function. Homozygous knockout alleles of mouse Rabl3 were embryonic lethal, but a viable hypomorphic allele ( xiamen [ xm ]) causing in-frame deletion of four amino acids from the interswitch region resulted in profound defects in lymphopoiesis. Impaired lymphoid progenitor development led to deficiencies of B cells, T cells, and natural killer (NK) cells in Rabl3 xm/xm mice. T cells and NK cells exhibited impaired cytolytic activity, and mice infected with mouse cytomegalovirus (MCMV) displayed elevated titers in the spleen. Myeloid cells were normal in number and function. Biophysical and crystallographic studies demonstrated that RABL3 formed a homodimer in solution via interactions between the effector binding surfaces on each subunit; monomers adopted a typical small G protein fold. RABL3 xm displayed a large compensatory alteration in switch I, which adopted a β-strand configuration normally provided by the deleted interswitch residues, thereby permitting homodimer formation. Dysregulated effector binding due to conformational changes in the switch I–interswitch–switch II module likely underlies the xm phenotype. One such effector may be GPR89, putatively an ion channel or G protein-coupled receptor (GPCR). RABL3, but not RABL3 xm , strongly associated with and stabilized GPR89, and an N -ethyl- N -nitrosourea (ENU)-induced mutation ( explorer ) in Gpr89 phenocopied Rabl3 xm .
    Type of Medium: Online Resource
    ISSN: 0027-8424 , 1091-6490
    RVK:
    RVK:
    Language: English
    Publisher: Proceedings of the National Academy of Sciences
    Publication Date: 2020
    detail.hit.zdb_id: 209104-5
    detail.hit.zdb_id: 1461794-8
    SSG: 11
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...