GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Yang, Shizhong  (2)
  • Linguistics  (2)
  • 1
    Online Resource
    Online Resource
    Proceedings of the National Academy of Sciences ; 2014
    In:  Proceedings of the National Academy of Sciences Vol. 111, No. 9 ( 2014-03-04), p. 3350-3353
    In: Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, Vol. 111, No. 9 ( 2014-03-04), p. 3350-3353
    Abstract: It is well-believed that below a certain particle size, grain boundary-mediated plastic deformation (e.g., grain rotation, grain boundary sliding and diffusion) substitutes for conventional dislocation nucleation and motion as the dominant deformation mechanism. However, in situ probing of grain boundary processes of ultrafine nanocrystals during plastic deformation has not been feasible, precluding the direct exploration of the nanomechanics. Here we present the in situ texturing observation of bulk-sized platinum in a nickel pressure medium of various particle sizes from 500 nm down to 3 nm. Surprisingly, the texture strength of the same-sized platinum drops rapidly with decreasing grain size of the nickel medium, indicating that more active grain rotation occurs in the smaller nickel nanocrystals. Insight into these processes provides a better understanding of the plastic deformation of nanomaterials in a few-nanometer length scale.
    Type of Medium: Online Resource
    ISSN: 0027-8424 , 1091-6490
    RVK:
    RVK:
    Language: English
    Publisher: Proceedings of the National Academy of Sciences
    Publication Date: 2014
    detail.hit.zdb_id: 209104-5
    detail.hit.zdb_id: 1461794-8
    SSG: 11
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    American Association for the Advancement of Science (AAAS) ; 2012
    In:  Science Vol. 338, No. 6113 ( 2012-12-14), p. 1448-1451
    In: Science, American Association for the Advancement of Science (AAAS), Vol. 338, No. 6113 ( 2012-12-14), p. 1448-1451
    Abstract: The size of nanocrystals provides a limitation on dislocation activity and associated stress-induced deformation. Dislocation-mediated plastic deformation is expected to become inactive below a critical particle size, which has been proposed to be between 10 and 30 nanometers according to computer simulations and transmission electron microscopy analysis. However, deformation experiments at high pressure on polycrystalline nickel suggest that dislocation activity is still operative in 3-nanometer crystals. Substantial texturing is observed at pressures above 3.0 gigapascals for 500-nanometer nickel and at greater than 11.0 gigapascals for 20-nanometer nickel. Surprisingly, texturing is also seen in 3-nanometer nickel when compressed above 18.5 gigapascals. The observations of pressure-promoted texturing indicate that under high external pressures, dislocation activity can be extended down to a few-nanometers-length scale.
    Type of Medium: Online Resource
    ISSN: 0036-8075 , 1095-9203
    RVK:
    RVK:
    Language: English
    Publisher: American Association for the Advancement of Science (AAAS)
    Publication Date: 2012
    detail.hit.zdb_id: 128410-1
    detail.hit.zdb_id: 2066996-3
    detail.hit.zdb_id: 2060783-0
    SSG: 11
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...