GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Xie, X. Sunney  (3)
  • Linguistics  (3)
  • 1
    In: Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, Vol. 114, No. 41 ( 2017-10-10)
    Abstract: Reciprocal translocations (RecT) and Robertsonian translocations (RobT) are among the most common chromosomal abnormalities that cause infertility and birth defects. Preimplantation genetic testing for aneuploidy using comprehensive chromosome screening for in vitro fertilization enables embryo selection with balanced chromosomal ploidy; however, it is normally unable to determine whether an embryo is a translocation carrier. Here we report a method named “Mapping Allele with Resolved Carrier Status” (MaReCs), which enables chromosomal ploidy screening and resolution of the translocation carrier status of the same embryo. We performed MaReCs on 108 embryos, of which 96 were from 13 RecT carriers and 12 were from three RobT carriers. Thirteen of the sixteen patients had at least one diploid embryo. We have confirmed the accuracy of our carrier status determination in amniotic fluid karyotyping of seven cases as well as in the live birth we have thus far. Therefore, MaReCs accurately enables the selection of translocation-free embryos from patients carrying chromosomal translocations. We expect MaReCs will help reduce the propagation of RecT/RobT in the human population.
    Type of Medium: Online Resource
    ISSN: 0027-8424 , 1091-6490
    RVK:
    RVK:
    Language: English
    Publisher: Proceedings of the National Academy of Sciences
    Publication Date: 2017
    detail.hit.zdb_id: 209104-5
    detail.hit.zdb_id: 1461794-8
    SSG: 11
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    Proceedings of the National Academy of Sciences ; 2016
    In:  Proceedings of the National Academy of Sciences Vol. 113, No. 42 ( 2016-10-18), p. 11907-11912
    In: Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, Vol. 113, No. 42 ( 2016-10-18), p. 11907-11912
    Abstract: Preimplantation genetic screening (PGS) is widely used to select in vitro-fertilized embryos free of chromosomal abnormalities and to improve the clinical outcome of in vitro fertilization (IVF). A disadvantage of PGS is that it requires biopsy of the preimplantation human embryo, which can limit the clinical applicability of PGS due to the invasiveness and complexity of the process. Here, we present and validate a noninvasive chromosome screening (NICS) method based on sequencing the genomic DNA secreted into the culture medium from the human blastocyst. By using multiple annealing and looping-based amplification cycles (MALBAC) for whole-genome amplification (WGA), we performed next-generation sequencing (NGS) on the spent culture medium used to culture human blastocysts ( n = 42) and obtained the ploidy information of all 24 chromosomes. We validated these results by comparing each with their corresponding whole donated embryo and obtained a high correlation for identification of chromosomal abnormalities (sensitivity, 0.882, and specificity, 0.840). With this validated NICS method, we performed chromosome screening on IVF embryos from seven couples with balanced translocation, azoospermia, or recurrent pregnancy loss. Six of them achieved successful clinical pregnancies, and five have already achieved healthy live births thus far. The NICS method avoids the need for embryo biopsy and therefore substantially increases the safety of its use. The method has the potential of much wider chromosome screening applicability in clinical IVF, due to its high accuracy and noninvasiveness.
    Type of Medium: Online Resource
    ISSN: 0027-8424 , 1091-6490
    RVK:
    RVK:
    Language: English
    Publisher: Proceedings of the National Academy of Sciences
    Publication Date: 2016
    detail.hit.zdb_id: 209104-5
    detail.hit.zdb_id: 1461794-8
    SSG: 11
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    Proceedings of the National Academy of Sciences ; 2020
    In:  Proceedings of the National Academy of Sciences Vol. 117, No. 6 ( 2020-02-11), p. 2886-2893
    In: Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, Vol. 117, No. 6 ( 2020-02-11), p. 2886-2893
    Abstract: Transcriptome profiling by RNA sequencing (RNA-seq) has been widely used to characterize cellular status, but it relies on second-strand complementary DNA (cDNA) synthesis to generate initial material for library preparation. Here we use bacterial transposase Tn5, which has been increasingly used in various high-throughput DNA analyses, to construct RNA-seq libraries without second-strand synthesis. We show that Tn5 transposome can randomly bind RNA/DNA heteroduplexes and add sequencing adapters onto RNA directly after reverse transcription. This method, Sequencing HEteRo RNA-DNA-hYbrid (SHERRY), is versatile and scalable. SHERRY accepts a wide range of starting materials, from bulk RNA to single cells. SHERRY offers a greatly simplified protocol and produces results with higher reproducibility and GC uniformity compared with prevailing RNA-seq methods.
    Type of Medium: Online Resource
    ISSN: 0027-8424 , 1091-6490
    RVK:
    RVK:
    Language: English
    Publisher: Proceedings of the National Academy of Sciences
    Publication Date: 2020
    detail.hit.zdb_id: 209104-5
    detail.hit.zdb_id: 1461794-8
    SSG: 11
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...