GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Wang, Zhaoming  (1)
  • Linguistics  (1)
  • 1
    Online Resource
    Online Resource
    Proceedings of the National Academy of Sciences ; 2011
    In:  Proceedings of the National Academy of Sciences Vol. 108, No. 44 ( 2011-11), p. 18026-18031
    In: Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, Vol. 108, No. 44 ( 2011-11), p. 18026-18031
    Abstract: Recent discoveries of hundreds of common susceptibility SNPs from genome-wide association studies provide a unique opportunity to examine population genetic models for complex traits. In this report, we investigate distributions of various population genetic parameters and their interrelationships using estimates of allele frequencies and effect-size parameters for about 400 susceptibility SNPs across a spectrum of qualitative and quantitative traits. We calibrate our analysis by statistical power for detection of SNPs to account for overrepresentation of variants with larger effect sizes in currently known SNPs that are expected due to statistical power for discovery. Across all qualitative disease traits, minor alleles conferred “risk” more often than “protection.” Across all traits, an inverse relationship existed between “regression effects” and allele frequencies. Both of these trends were remarkably strong for type I diabetes, a trait that is most likely to be influenced by selection, but were modest for other traits such as human height or late-onset diseases such as type II diabetes and cancers. Across all traits, the estimated effect-size distribution suggested the existence of increasingly large numbers of susceptibility SNPs with decreasingly small effects. For most traits, the set of SNPs with intermediate minor allele frequencies (5–20%) contained an unusually small number of susceptibility loci and explained a relatively small fraction of heritability compared with what would be expected from the distribution of SNPs in the general population. These trends could have several implications for future studies of common and uncommon variants.
    Type of Medium: Online Resource
    ISSN: 0027-8424 , 1091-6490
    RVK:
    RVK:
    Language: English
    Publisher: Proceedings of the National Academy of Sciences
    Publication Date: 2011
    detail.hit.zdb_id: 209104-5
    detail.hit.zdb_id: 1461794-8
    SSG: 11
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...