GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    In: Science, American Association for the Advancement of Science (AAAS), Vol. 378, No. 6615 ( 2022-10-07)
    Abstract: Investment in Africa over the past year with regard to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) sequencing has led to a massive increase in the number of sequences, which, to date, exceeds 100,000 sequences generated to track the pandemic on the continent. These sequences have profoundly affected how public health officials in Africa have navigated the COVID-19 pandemic. RATIONALE We demonstrate how the first 100,000 SARS-CoV-2 sequences from Africa have helped monitor the epidemic on the continent, how genomic surveillance expanded over the course of the pandemic, and how we adapted our sequencing methods to deal with an evolving virus. Finally, we also examine how viral lineages have spread across the continent in a phylogeographic framework to gain insights into the underlying temporal and spatial transmission dynamics for several variants of concern (VOCs). RESULTS Our results indicate that the number of countries in Africa that can sequence the virus within their own borders is growing and that this is coupled with a shorter turnaround time from the time of sampling to sequence submission. Ongoing evolution necessitated the continual updating of primer sets, and, as a result, eight primer sets were designed in tandem with viral evolution and used to ensure effective sequencing of the virus. The pandemic unfolded through multiple waves of infection that were each driven by distinct genetic lineages, with B.1-like ancestral strains associated with the first pandemic wave of infections in 2020. Successive waves on the continent were fueled by different VOCs, with Alpha and Beta cocirculating in distinct spatial patterns during the second wave and Delta and Omicron affecting the whole continent during the third and fourth waves, respectively. Phylogeographic reconstruction points toward distinct differences in viral importation and exportation patterns associated with the Alpha, Beta, Delta, and Omicron variants and subvariants, when considering both Africa versus the rest of the world and viral dissemination within the continent. Our epidemiological and phylogenetic inferences therefore underscore the heterogeneous nature of the pandemic on the continent and highlight key insights and challenges, for instance, recognizing the limitations of low testing proportions. We also highlight the early warning capacity that genomic surveillance in Africa has had for the rest of the world with the detection of new lineages and variants, the most recent being the characterization of various Omicron subvariants. CONCLUSION Sustained investment for diagnostics and genomic surveillance in Africa is needed as the virus continues to evolve. This is important not only to help combat SARS-CoV-2 on the continent but also because it can be used as a platform to help address the many emerging and reemerging infectious disease threats in Africa. In particular, capacity building for local sequencing within countries or within the continent should be prioritized because this is generally associated with shorter turnaround times, providing the most benefit to local public health authorities tasked with pandemic response and mitigation and allowing for the fastest reaction to localized outbreaks. These investments are crucial for pandemic preparedness and response and will serve the health of the continent well into the 21st century. Expanse of SARS-CoV-2 sequencing capacity in Africa. ( A ) African countries (shaded in gray) and institutions (red circles) with on-site sequencing facilities that are capable of producing SARS-CoV-2 whole genomes locally. ( B ) The number of SARS-CoV-2 genomes produced per country and the proportion of those genomes that were produced locally, regionally within Africa, or abroad. ( C ) Decreased turnaround time of sequencing output in Africa to an almost real-time release of genomic data.
    Type of Medium: Online Resource
    ISSN: 0036-8075 , 1095-9203
    RVK:
    RVK:
    Language: English
    Publisher: American Association for the Advancement of Science (AAAS)
    Publication Date: 2022
    detail.hit.zdb_id: 128410-1
    detail.hit.zdb_id: 2066996-3
    detail.hit.zdb_id: 2060783-0
    SSG: 11
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    In: Science, American Association for the Advancement of Science (AAAS), Vol. 375, No. 6584 ( 2022-03-04)
    Abstract: Drosophila melanogaster has had a fruitful history in biological research because it has contributed to many key discoveries in genetics, development, and neurobiology. The fruit fly genome contains ~14,000 protein-coding genes, ~63% of which have human orthologs. Single-cell RNA-sequencing has recently been applied to multiple Drosophila tissues and developmental stages. However, these data have been generated by different laboratories on different genetic backgrounds with different dissociation protocols and sequencing platforms, which has hindered the systematic comparison of gene expression across cells and tissues. RATIONALE We aimed to establish a cell atlas for the entire adult Drosophila with the same genetic background, dissociation protocol, and sequencing platform to (i) obtain a comprehensive categorization of cell types, (ii) integrate single-cell transcriptome data with existing knowledge about gene expression and cell types, (iii) systematically compare gene expression across the entire organism and between males and females, and (iv) identify cell type–specific markers across the entire organism. We chose single-nucleus RNA-sequencing (snRNA-seq) to circumvent the difficulties of dissociating cells that are embedded in the cuticle (e.g., sensory neurons) or that are multinucleated (e.g., muscle cells). We took two complementary strategies: sequencing nuclei from dissected tissues to know the identity of the tissue source and sequencing nuclei from the entire head and body to ensure that all cells are sampled. Experts from 40 laboratories participated in crowd annotation to assign transcriptomic cell types with the best knowledge available. RESULTS We sequenced 570,000 cells using droplet-based 10x Genomics from 15 dissected tissues as well as whole heads and bodies, separately in females and males. We also sequenced 10,000 cells from dissected tissues using the plate-based Smart-seq2 platform, providing deeper coverage per cell. We developed reproducible analysis pipelines using NextFlow and implemented a distributed cell-type annotation system with controlled vocabularies in SCope. Crowd-based annotations of transcriptomes from dissected tissues identified 17 main cell categories and 251 detailed cell types linked to FlyBase ontologies. Many of these cell types are characterized for the first time, either because they emerged only after increasing cell coverage or because they reside in tissues that had not been previously subjected to scRNA-seq. The excellent correspondence of transcriptomic clusters from whole body and dissected tissues allowed us to transfer annotations and identify a few cuticular cell types not detected in individual tissues. Cross-tissue analysis revealed location-specific subdivisions of muscle cells and heterogeneity within blood cells. We then determined cell type–specific marker genes and transcription factors with different specificity levels, enabling the construction of gene regulatory networks. Finally, we explored sexual dimorphism, finding a link between sex-biased expression and the presence of doublesex , and investigated tissue dynamics through trajectory analyses. CONCLUSION Our Fly Cell Atlas (FCA) constitutes a valuable resource for the Drosophila community as a reference for studies of gene function at single-cell resolution. All the FCA data are freely available for further analysis through multiple portals and can be downloaded for custom analyses using other single-cell tools. The ability to annotate cell types by sequencing the entire head and body will facilitate the use of Drosophila in the study of biological processes and in modeling human diseases at a whole-organism level with cell-type resolution. All data with annotations can be accessed from www.flycellatlas.org , which provides links to SCope, ASAP, and cellxgene portals. Tabula Drosophilae . In this single-cell atlas of the adult fruit fly, 580,000 cells were sequenced and 〉 250 cell types were annotated. They are from 15 individually dissected sexed tissues as well as the entire head and body. All data are freely available for visualization and download, with featured analyses shown at the bottom right.
    Type of Medium: Online Resource
    ISSN: 0036-8075 , 1095-9203
    RVK:
    RVK:
    Language: English
    Publisher: American Association for the Advancement of Science (AAAS)
    Publication Date: 2022
    detail.hit.zdb_id: 128410-1
    detail.hit.zdb_id: 2066996-3
    detail.hit.zdb_id: 2060783-0
    SSG: 11
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...