GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    Proceedings of the National Academy of Sciences ; 2016
    In:  Proceedings of the National Academy of Sciences Vol. 113, No. 5 ( 2016-02-02), p. 1244-1249
    In: Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, Vol. 113, No. 5 ( 2016-02-02), p. 1244-1249
    Abstract: Graves’ disease is an autoimmune disorder that causes hyperthyroidism because of autoantibodies that bind to the thyroid-stimulating hormone receptor (TSHR) on the thyroid gland, triggering thyroid hormone release. The physiological control of thyroid hormone homeostasis by the feedback loops involving the hypothalamus–pituitary–thyroid axis is disrupted by these stimulating autoantibodies. To reset the endogenous thyrotrophic feedback control, we designed a synthetic mammalian gene circuit that maintains thyroid hormone homeostasis by monitoring thyroid hormone levels and coordinating the expression of a thyroid-stimulating hormone receptor antagonist (TSH Antag ), which competitively inhibits the binding of thyroid-stimulating hormone or the human autoantibody to TSHR. This synthetic control device consists of a synthetic thyroid-sensing receptor (TSR), a yeast Gal4 protein/human thyroid receptor-α fusion, which reversibly triggers expression of the TSH Antag gene from TSR-dependent promoters. In hyperthyroid mice, this synthetic circuit sensed pathological thyroid hormone levels and restored the thyrotrophic feedback control of the hypothalamus–pituitary–thyroid axis to euthyroid hormone levels. Therapeutic plug and play gene circuits that restore physiological feedback control in metabolic disorders foster advanced gene- and cell-based therapies.
    Type of Medium: Online Resource
    ISSN: 0027-8424 , 1091-6490
    RVK:
    RVK:
    Language: English
    Publisher: Proceedings of the National Academy of Sciences
    Publication Date: 2016
    detail.hit.zdb_id: 209104-5
    detail.hit.zdb_id: 1461794-8
    SSG: 11
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    American Association for the Advancement of Science (AAAS) ; 2016
    In:  Science Vol. 354, No. 6317 ( 2016-12-09), p. 1296-1301
    In: Science, American Association for the Advancement of Science (AAAS), Vol. 354, No. 6317 ( 2016-12-09), p. 1296-1301
    Abstract: Chronically deregulated blood-glucose concentrations in diabetes mellitus result from a loss of pancreatic insulin-producing β cells (type 1 diabetes, T1D) or from impaired insulin sensitivity of body cells and glucose-stimulated insulin release (type 2 diabetes, T2D). Here, we show that therapeutically applicable β-cell–mimetic designer cells can be established by minimal engineering of human cells. We achieved glucose responsiveness by a synthetic circuit that couples glycolysis-mediated calcium entry to an excitation-transcription system controlling therapeutic transgene expression. Implanted circuit-carrying cells corrected insulin deficiency and self-sufficiently abolished persistent hyperglycemia in T1D mice. Similarly, glucose-inducible glucagon-like peptide 1 transcription improved endogenous glucose-stimulated insulin release and glucose tolerance in T2D mice. These systems may enable a combination of diagnosis and treatment for diabetes mellitus therapy.
    Type of Medium: Online Resource
    ISSN: 0036-8075 , 1095-9203
    RVK:
    RVK:
    Language: English
    Publisher: American Association for the Advancement of Science (AAAS)
    Publication Date: 2016
    detail.hit.zdb_id: 128410-1
    detail.hit.zdb_id: 2066996-3
    detail.hit.zdb_id: 2060783-0
    SSG: 11
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    In: Science, American Association for the Advancement of Science (AAAS), Vol. 368, No. 6494 ( 2020-05-29), p. 993-1001
    Abstract: Sophisticated devices for remote-controlled medical interventions require an electrogenetic interface that uses digital electronic input to directly program cellular behavior. We present a cofactor-free bioelectronic interface that directly links wireless-powered electrical stimulation of human cells to either synthetic promoter–driven transgene expression or rapid secretion of constitutively expressed protein therapeutics from vesicular stores. Electrogenetic control was achieved by coupling ectopic expression of the L-type voltage-gated channel Ca V 1.2 and the inwardly rectifying potassium channel K ir 2.1 to the desired output through endogenous calcium signaling. Focusing on type 1 diabetes, we engineered electrosensitive human β cells ( Electro β cells). Wireless electrical stimulation of Electro β cells inside a custom-built bioelectronic device provided real-time control of vesicular insulin release; insulin levels peaked within 10 minutes. When subcutaneously implanted, this electrotriggered vesicular release system restored normoglycemia in type 1 diabetic mice.
    Type of Medium: Online Resource
    ISSN: 0036-8075 , 1095-9203
    RVK:
    RVK:
    Language: English
    Publisher: American Association for the Advancement of Science (AAAS)
    Publication Date: 2020
    detail.hit.zdb_id: 128410-1
    detail.hit.zdb_id: 2066996-3
    detail.hit.zdb_id: 2060783-0
    SSG: 11
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...