GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Proceedings of the National Academy of Sciences  (2)
  • Roffman, Joshua L.  (2)
  • Linguistics  (2)
Material
Publisher
  • Proceedings of the National Academy of Sciences  (2)
Language
Years
FID
Subjects(RVK)
  • 1
    Online Resource
    Online Resource
    Proceedings of the National Academy of Sciences ; 2019
    In:  Proceedings of the National Academy of Sciences Vol. 116, No. 18 ( 2019-04-30), p. 9050-9059
    In: Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, Vol. 116, No. 18 ( 2019-04-30), p. 9050-9059
    Abstract: Converging evidence indicates that groups of patients with nominally distinct psychiatric diagnoses are not separated by sharp or discontinuous neurobiological boundaries. In healthy populations, individual differences in behavior are reflected in variability across the collective set of functional brain connections (functional connectome). These data suggest that the spectra of transdiagnostic symptom profiles observed in psychiatric patients may map onto detectable patterns of network function. To examine the manner through which neurobiological variation might underlie clinical presentation, we obtained fMRI data from over 1,000 individuals, including 210 diagnosed with a primary psychotic disorder or affective psychosis (bipolar disorder with psychosis and schizophrenia or schizoaffective disorder), 192 presenting with a primary affective disorder without psychosis (unipolar depression, bipolar disorder without psychosis), and 608 demographically matched healthy comparison participants recruited through a large-scale study of brain imaging and genetics. Here, we examine variation in functional connectomes across psychiatric diagnoses, finding striking evidence for disease connectomic “fingerprints” that are commonly disrupted across distinct forms of pathology and appear to scale as a function of illness severity. The presence of affective and psychotic illnesses was associated with graded disruptions in frontoparietal network connectivity (encompassing aspects of dorsolateral prefrontal, dorsomedial prefrontal, lateral parietal, and posterior temporal cortices). Conversely, other properties of network connectivity, including default network integrity, were preferentially disrupted in patients with psychotic illness, but not patients without psychotic symptoms. This work allows us to establish key biological and clinical features of the functional connectomes of severe mental disease.
    Type of Medium: Online Resource
    ISSN: 0027-8424 , 1091-6490
    RVK:
    RVK:
    Language: English
    Publisher: Proceedings of the National Academy of Sciences
    Publication Date: 2019
    detail.hit.zdb_id: 209104-5
    detail.hit.zdb_id: 1461794-8
    SSG: 11
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    Proceedings of the National Academy of Sciences ; 2015
    In:  Proceedings of the National Academy of Sciences Vol. 112, No. 8 ( 2015-02-24), p. 2479-2484
    In: Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, Vol. 112, No. 8 ( 2015-02-24), p. 2479-2484
    Abstract: The discovery and prioritization of heritable phenotypes is a computational challenge in a variety of settings, including neuroimaging genetics and analyses of the vast phenotypic repositories in electronic health record systems and population-based biobanks. Classical estimates of heritability require twin or pedigree data, which can be costly and difficult to acquire. Genome-wide complex trait analysis is an alternative tool to compute heritability estimates from unrelated individuals, using genome-wide data that are increasingly ubiquitous, but is computationally demanding and becomes difficult to apply in evaluating very large numbers of phenotypes. Here we present a fast and accurate statistical method for high-dimensional heritability analysis using genome-wide SNP data from unrelated individuals, termed massively expedited genome-wide heritability analysis (MEGHA) and accompanying nonparametric sampling techniques that enable flexible inferences for arbitrary statistics of interest. MEGHA produces estimates and significance measures of heritability with several orders of magnitude less computational time than existing methods, making heritability-based prioritization of millions of phenotypes based on data from unrelated individuals tractable for the first time to our knowledge. As a demonstration of application, we conducted heritability analyses on global and local morphometric measurements derived from brain structural MRI scans, using genome-wide SNP data from 1,320 unrelated young healthy adults of non-Hispanic European ancestry. We also computed surface maps of heritability for cortical thickness measures and empirically localized cortical regions where thickness measures were significantly heritable. Our analyses demonstrate the unique capability of MEGHA for large-scale heritability-based screening and high-dimensional heritability profile construction.
    Type of Medium: Online Resource
    ISSN: 0027-8424 , 1091-6490
    RVK:
    RVK:
    Language: English
    Publisher: Proceedings of the National Academy of Sciences
    Publication Date: 2015
    detail.hit.zdb_id: 209104-5
    detail.hit.zdb_id: 1461794-8
    SSG: 11
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...