GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Lu, Jing  (1)
  • Linguistics  (1)
Material
Language
Years
FID
Subjects(RVK)
  • 1
    Online Resource
    Online Resource
    Proceedings of the National Academy of Sciences ; 2021
    In:  Proceedings of the National Academy of Sciences Vol. 118, No. 40 ( 2021-10-05)
    In: Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, Vol. 118, No. 40 ( 2021-10-05)
    Abstract: The Late Triassic Carnian Pluvial Episode (CPE) saw a dramatic increase in global humidity and temperature that has been linked to the large-scale volcanism of the Wrangellia large igneous province. The climatic changes coincide with a major biological turnover on land that included the ascent of the dinosaurs and the origin of modern conifers. However, linking the disparate cause and effects of the CPE has yet to be achieved because of the lack of a detailed terrestrial record of these events. Here, we present a multidisciplinary record of volcanism and environmental change from an expanded Carnian lake succession of the Jiyuan Basin, North China. New U–Pb zircon dating, high-resolution chemostratigraphy, and palynological and sedimentological data reveal that terrestrial conditions in the region were in remarkable lockstep with the large-scale volcanism. Using the sedimentary mercury record as a proxy for eruptions reveals four discrete episodes during the CPE interval (ca. 234.0 to 232.4 Ma). Each eruptive phase correlated with large, negative C isotope excursions and major climatic changes to more humid conditions (marked by increased importance of hygrophytic plants), lake expansion, and eutrophication. Our results show that large igneous province eruptions can occur in multiple, discrete pulses, rather than showing a simple acme-and-decline history, and demonstrate their powerful ability to alter the global C cycle, cause climate change, and drive macroevolution, at least in the Triassic.
    Type of Medium: Online Resource
    ISSN: 0027-8424 , 1091-6490
    RVK:
    RVK:
    Language: English
    Publisher: Proceedings of the National Academy of Sciences
    Publication Date: 2021
    detail.hit.zdb_id: 209104-5
    detail.hit.zdb_id: 1461794-8
    SSG: 11
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...