GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    American Association for the Advancement of Science (AAAS) ; 2002
    In:  Science Vol. 296, No. 5565 ( 2002-04-05), p. 79-92
    In: Science, American Association for the Advancement of Science (AAAS), Vol. 296, No. 5565 ( 2002-04-05), p. 79-92
    Abstract: We have produced a draft sequence of the rice genome for the most widely cultivated subspecies in China, Oryza sativa L. ssp. indica , by whole-genome shotgun sequencing. The genome was 466 megabases in size, with an estimated 46,022 to 55,615 genes. Functional coverage in the assembled sequences was 92.0%. About 42.2% of the genome was in exact 20-nucleotide oligomer repeats, and most of the transposons were in the intergenic regions between genes. Although 80.6% of predicted Arabidopsis thaliana genes had a homolog in rice, only 49.4% of predicted rice genes had a homolog in A. thaliana . The large proportion of rice genes with no recognizable homologs is due to a gradient in the GC content of rice coding sequences.
    Type of Medium: Online Resource
    ISSN: 0036-8075 , 1095-9203
    RVK:
    RVK:
    Language: English
    Publisher: American Association for the Advancement of Science (AAAS)
    Publication Date: 2002
    detail.hit.zdb_id: 128410-1
    detail.hit.zdb_id: 2066996-3
    SSG: 11
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    American Association for the Advancement of Science (AAAS) ; 2024
    In:  Science Vol. 385, No. 6704 ( 2024-07-05)
    In: Science, American Association for the Advancement of Science (AAAS), Vol. 385, No. 6704 ( 2024-07-05)
    Abstract: The molecular basis of phenotypic variation has long been one of the core endeavors in genetics. In plants, most traits are cooperatively controlled by multiple genes. Besides the additive effects of each individual gene, there are often genetic interactions among genes leading to complex epistatic effects. Although many genes have been functionally identified, a global view of genetic architecture—including the number of genes affecting a trait as well as genetic effects and their interactions with each other—remains lacking in most plants. RATIONALE The advent of new genomics technologies and quantitative genetics methods has greatly facilitated the characterization of genetic architecture. Nonetheless, the power is strongly affected by size, diversity, and structure of the genetic population used. The allelic frequencies of most genes and their digenic combinations are highly skewed in natural populations. Less-structured experimental populations can give rise to more informative allelic combinations and are more suitable for genetic mapping, epistatic interaction detection, and genetic effect evaluation. However, to date, both genetic diversity and sample size of experimental populations in most plants are relatively limited and not sufficient to perform a powerful and reliable characterization. RESULTS We developed a large permanent population in rice [18,421 lines (18K-rice)], using an approach designed to reduce population structure. We generated reference-level genome assemblies for the founders and obtained high-density genotypes of all 18K-rice lines through whole-genome sequencing. In total, we mapped 1207 quantitative trait loci (QTL) for 16 agronomic traits and developed an integrated genomics method [rice genome-wide association study to gene (RiceG2G)] to prioritize causal genes. Out of 1207 QTL, 28.0% contained known genes. For panicle number and heading date we experimentally validated two newly identified causal genes, OsMADS22 and OsFTL1 . Furthermore, we constructed a genetic interactome using 18K-rice in which 170 masking genes were implicated in the cause of genetic background effects. We estimated that the additive and epistatic effects of the identified QTL collectively explained 49.9 and 2.2% of phenotypic variation, respectively. By contrast, the genomic heritability accounting for the additive and epistatic effects was estimated to be 56.2 and 8.8%, respectively. CONCLUSION The genetic mapping work suggests that previously identified quantitative trait genes are a small proportion of the total set in rice. Extensive quantitative and functional genomics studies for various traits are still required to further extend the gene list. Regarding overall genetic architecture, additive effects are the main force in shaping rice traits and the genotype-to-phenotype relationship becomes complex in the presence of numerous genetic interactions. Specially, masking alleles in epistasis pairs are prevalent in rice, making a significant genetic background effect. These findings advance our understanding of rice genetics and plants in general. An atlas of genetic architecture of rice traits using a large permanent population. A number of QTL and epistatic QTL pairs were identified, with additive and epistatic effects estimated.
    Type of Medium: Online Resource
    ISSN: 0036-8075 , 1095-9203
    RVK:
    RVK:
    Language: English
    Publisher: American Association for the Advancement of Science (AAAS)
    Publication Date: 2024
    detail.hit.zdb_id: 128410-1
    detail.hit.zdb_id: 2066996-3
    SSG: 11
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    Proceedings of the National Academy of Sciences ; 2020
    In:  Proceedings of the National Academy of Sciences Vol. 117, No. 25 ( 2020-06-23), p. 14270-14279
    In: Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, Vol. 117, No. 25 ( 2020-06-23), p. 14270-14279
    Abstract: Directional cell migration involves signaling cascades that stimulate actin assembly at the leading edge, and additional pathways must inhibit actin polymerization at the rear. During neuroblast migration in Caenorhabditis elegans , the transmembrane protein MIG-13/Lrp12 acts through the Arp2/3 nucleation-promoting factors WAVE and WASP to guide the anterior migration. Here we show that a tyrosine kinase, SRC-1, directly phosphorylates MIG-13 and promotes its activity on actin assembly at the leading edge. In GFP knockin animals, SRC-1 and MIG-13 distribute along the entire plasma membrane of migrating cells. We reveal that a receptor-like tyrosine phosphatase, PTP-3, maintains the F-actin polarity during neuroblast migration. Recombinant PTP-3 dephosphorylates SRC-1–dependent MIG-13 phosphorylation in vitro. Importantly, the endogenous PTP-3 accumulates at the rear of the migrating neuroblast, and its extracellular domain is essential for directional cell migration. We provide evidence that the asymmetrically localized tyrosine phosphatase PTP-3 spatially restricts MIG-13/Lrp12 receptor activity in migrating cells.
    Type of Medium: Online Resource
    ISSN: 0027-8424 , 1091-6490
    RVK:
    RVK:
    Language: English
    Publisher: Proceedings of the National Academy of Sciences
    Publication Date: 2020
    detail.hit.zdb_id: 209104-5
    detail.hit.zdb_id: 1461794-8
    SSG: 11
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Online Resource
    Online Resource
    American Association for the Advancement of Science (AAAS) ; 2024
    In:  Science Vol. 385, No. 6704 ( 2024-07-05), p. 62-68
    In: Science, American Association for the Advancement of Science (AAAS), Vol. 385, No. 6704 ( 2024-07-05), p. 62-68
    Abstract: Nanoscale materials can have outstanding properties, but it can be challenging to assemble them into larger fibers or sheets while retaining their intrinsic capabilities. For example, MXene nanosheets have excellent mechanical and electrical properties that are promising for flexible electronic devices and aerospace applications. Li et al . fabricated MXene films at room temperature using bacterial cellulose and liquid metal to sequentially bridge the nanosheets. The orientation of the MXene nanosheets was dramatically improved by the blade-coating layer-by-layer process, and the liquid metal effectively filled any voids. The interfacial interactions between sheets were also improved by hydrogen bonding from the bacterial cellulose and coordination bonding with the liquid metal, enhancing the stress transfer efficiency. —Marc S. Lavine
    Type of Medium: Online Resource
    ISSN: 0036-8075 , 1095-9203
    RVK:
    RVK:
    Language: English
    Publisher: American Association for the Advancement of Science (AAAS)
    Publication Date: 2024
    detail.hit.zdb_id: 128410-1
    detail.hit.zdb_id: 2066996-3
    SSG: 11
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    Online Resource
    Online Resource
    American Association for the Advancement of Science (AAAS) ; 2022
    In:  Science Vol. 377, No. 6609 ( 2022-08-26), p. 967-975
    In: Science, American Association for the Advancement of Science (AAAS), Vol. 377, No. 6609 ( 2022-08-26), p. 967-975
    Abstract: The ability to perform karyotype engineering in laboratory mice has been developed using haploid stem cells and gene editing.
    Type of Medium: Online Resource
    ISSN: 0036-8075 , 1095-9203
    RVK:
    RVK:
    Language: English
    Publisher: American Association for the Advancement of Science (AAAS)
    Publication Date: 2022
    detail.hit.zdb_id: 128410-1
    detail.hit.zdb_id: 2066996-3
    SSG: 11
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    In: The Journal of Neuroscience, Society for Neuroscience, Vol. 33, No. 19 ( 2013-05-08), p. 8423-8441
    Abstract: Profound synapse loss is one of the major pathological hallmarks associated with Alzheimer's disease (AD) and might underlie memory impairment. Our previous work demonstrated that the magnesium ion is a critical factor in controlling synapse density/plasticity. Here, we investigated whether elevation of brain magnesium by the use of a recently developed compound, magnesium- l -threonate (MgT), can ameliorate the AD-like pathologies and cognitive deficits in the APPswe/PS1dE9 mice, a transgenic (Tg) mouse model of AD. MgT treatment reduced Aβ plaque and prevented synapse loss and memory decline in the Tg mice. Strikingly, MgT treatment was effective even when given to the mice at the end stage of their AD-like pathological progression. To explore how elevation of brain magnesium ameliorates the AD-like pathologies in the brains of Tg mice, we studied molecules critical for APP metabolism and signaling pathways implicated in synaptic plasticity/density. In the Tg mice, the NMDAR/CREB/BDNF signaling was downregulated, whereas calpain/calcineurin/Cdk5 neurodegenerative signaling and β-secretase (BACE1) expression were upregulated. MgT treatment prevented the impairment of these signaling pathways, stabilized BACE1 expression, and reduced soluble APPβ and β-C-terminal fragments in the Tg mice. At the molecular level, elevation of extracellular magnesium prevented the high-Aβ-induced reductions in synaptic NMDARs by preventing calcineurin overactivation in hippocampal slices. Correlation studies suggested that the protection of NMDAR signaling might underlie the stabilization of BACE1 expression. Our results suggest that elevation of brain magnesium exerts substantial synaptoprotective effects in a mouse model of AD and may have therapeutic potential for treating AD in humans.
    Type of Medium: Online Resource
    ISSN: 0270-6474 , 1529-2401
    Language: English
    Publisher: Society for Neuroscience
    Publication Date: 2013
    detail.hit.zdb_id: 1475274-8
    detail.hit.zdb_id: 604637-X
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    In: Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, Vol. 114, No. 38 ( 2017-09-19)
    Abstract: G protein-coupled receptors (GPCRs) are classically characterized as cell-surface receptors transmitting extracellular signals into cells. Here we show that central components of a GPCR signaling system comprised of the melatonin type 1 receptor (MT 1 ), its associated G protein, and β-arrestins are on and within neuronal mitochondria. We discovered that the ligand melatonin is exclusively synthesized in the mitochondrial matrix and released by the organelle activating the mitochondrial MT 1 signal-transduction pathway inhibiting stress-mediated cytochrome c release and caspase activation. These findings coupled with our observation that mitochondrial MT 1 overexpression reduces ischemic brain injury in mice delineate a mitochondrial GPCR mechanism contributing to the neuroprotective action of melatonin. We propose a new term, “automitocrine,” analogous to “autocrine” when a similar phenomenon occurs at the cellular level, to describe this unexpected intracellular organelle ligand–receptor pathway that opens a new research avenue investigating mitochondrial GPCR biology.
    Type of Medium: Online Resource
    ISSN: 0027-8424 , 1091-6490
    RVK:
    RVK:
    Language: English
    Publisher: Proceedings of the National Academy of Sciences
    Publication Date: 2017
    detail.hit.zdb_id: 209104-5
    detail.hit.zdb_id: 1461794-8
    SSG: 11
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Online Resource
    Online Resource
    Proceedings of the National Academy of Sciences ; 2017
    In:  Proceedings of the National Academy of Sciences Vol. 114, No. 45 ( 2017-11-07), p. 11974-11979
    In: Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, Vol. 114, No. 45 ( 2017-11-07), p. 11974-11979
    Abstract: Pluripotency of embryonic stem cells (ESCs) can be functionally assessed according to the developmental potency. Tetraploid complementation, through which an entire organism is produced from the pluripotent donor cells, is taken as the most stringent test for pluripotency. It remains unclear whether ESCs of other species besides mice can pass this test. Here we show that the rat ESCs derived under 2i (two small molecule inhibitors) conditions at very early passages are able to produce fertile offspring by tetraploid complementation. However, they lose this capacity rapidly during culture due to a nearly complete loss of genomic imprinting. Our findings support that the naïve ground state pluripotency can be captured in rat ESCs but also point to the species-specific differences in its regulation and maintenance, which have implications for the derivation and application of naïve pluripotent stem cells in other species including human.
    Type of Medium: Online Resource
    ISSN: 0027-8424 , 1091-6490
    RVK:
    RVK:
    Language: English
    Publisher: Proceedings of the National Academy of Sciences
    Publication Date: 2017
    detail.hit.zdb_id: 209104-5
    detail.hit.zdb_id: 1461794-8
    SSG: 11
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Online Resource
    Online Resource
    American Association for the Advancement of Science (AAAS) ; 2011
    In:  Science Vol. 332, No. 6036 ( 2011-06-17), p. 1410-1413
    In: Science, American Association for the Advancement of Science (AAAS), Vol. 332, No. 6036 ( 2011-06-17), p. 1410-1413
    Abstract: We investigated the electron-pairing mechanism in an iron-based superconductor, iron selenide (FeSe), using scanning tunneling microscopy and spectroscopy. Tunneling conductance spectra of stoichiometric FeSe crystalline films in their superconducting state revealed evidence for a gap function with nodal lines. Electron pairing with twofold symmetry was demonstrated by direct imaging of quasiparticle excitations in the vicinity of magnetic vortex cores, Fe adatoms, and Se vacancies. The twofold pairing symmetry was further supported by the observation of striped electronic nanostructures in the slightly Se-doped samples. The anisotropy can be explained in terms of the orbital-dependent reconstruction of electronic structure in FeSe.
    Type of Medium: Online Resource
    ISSN: 0036-8075 , 1095-9203
    RVK:
    RVK:
    Language: English
    Publisher: American Association for the Advancement of Science (AAAS)
    Publication Date: 2011
    detail.hit.zdb_id: 128410-1
    detail.hit.zdb_id: 2066996-3
    SSG: 11
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    In: Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, Vol. 114, No. 21 ( 2017-05-23)
    Abstract: The polycistronic miR-183/96/182 cluster is preferentially and abundantly expressed in terminally differentiating sensory epithelia. To clarify its roles in the terminal differentiation of sensory receptors in vivo, we deleted the entire gene cluster in mouse germline through homologous recombination. The miR-183/96/182 null mice display impairment of the visual, auditory, vestibular, and olfactory systems, attributable to profound defects in sensory receptor terminal differentiation. Maturation of sensory receptor precursors is delayed, and they never attain a fully differentiated state. In the retina, delay in up-regulation of key photoreceptor genes underlies delayed outer segment elongation and possibly mispositioning of cone nuclei in the retina. Incomplete maturation of photoreceptors is followed shortly afterward by early-onset degeneration. Cell biologic and transcriptome analyses implicate dysregulation of ciliogenesis, nuclear translocation, and an epigenetic mechanism that may control timing of terminal differentiation in developing photoreceptors. In both the organ of Corti and the vestibular organ, impaired terminal differentiation manifests as immature stereocilia and kinocilia on the apical surface of hair cells. Our study thus establishes a dedicated role of the miR-183/96/182 cluster in driving the terminal differentiation of multiple sensory receptor cells.
    Type of Medium: Online Resource
    ISSN: 0027-8424 , 1091-6490
    RVK:
    RVK:
    Language: English
    Publisher: Proceedings of the National Academy of Sciences
    Publication Date: 2017
    detail.hit.zdb_id: 209104-5
    detail.hit.zdb_id: 1461794-8
    SSG: 11
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...