GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Du, Zhaopeng  (2)
  • Linguistics  (2)
Material
Person/Organisation
Language
Years
FID
Subjects(RVK)
  • 1
    Online Resource
    Online Resource
    Proceedings of the National Academy of Sciences ; 2004
    In:  Proceedings of the National Academy of Sciences Vol. 101, No. 35 ( 2004-08-31), p. 13068-13073
    In: Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, Vol. 101, No. 35 ( 2004-08-31), p. 13068-13073
    Abstract: Normal variations in glomerular filtration induce proportional changes in proximal tubule Na + reabsorption. This “glomerulotubular balance” derives from flow dependence of Na + uptake across luminal cell membranes; however, the underlying physical mechanism is unknown. Our hypothesis is that flow-dependent reabsorption is an autoregulatory mechanism that is independent of neural and hormonal systems. It is signaled by the hydrodynamic torque (bending moment) on epithelial microvilli. Such signals need to be transmitted to the terminal web to modulate Na + -H + -exchange activity. To investigate this hypothesis, we examined Na + transport and tubular diameter in response to different flow rates during the microperfusion of isolated S 2 proximal tubules from mouse kidneys. The data were analyzed by using a mathematical model to estimate the microvillous torque as function of flow. In this model, increases in luminal diameter have the effect of blunting the impact of flow velocity on microvillous shear stress and, thus, microvillous torque. We found that variations in microvillous torque produce nearly identical fractional changes in Na + reabsorption. Furthermore, the flow-dependent Na + transport is increased by increasing luminal fluid viscosity, diminished in Na + -H + exchanger isoform 3 knockout mice, and abolished by nontoxic disruption of the actin cytoskeleton. These data support our hypothesis that the “brush-border” microvilli serve a mechanosensory function in which fluid dynamic torque is transmitted to the actin cytoskeleton and modulates Na + absorption in kidney proximal tubules.
    Type of Medium: Online Resource
    ISSN: 0027-8424 , 1091-6490
    RVK:
    RVK:
    Language: English
    Publisher: Proceedings of the National Academy of Sciences
    Publication Date: 2004
    detail.hit.zdb_id: 209104-5
    detail.hit.zdb_id: 1461794-8
    SSG: 11
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    Proceedings of the National Academy of Sciences ; 2008
    In:  Proceedings of the National Academy of Sciences Vol. 105, No. 32 ( 2008-08-12), p. 11418-11423
    In: Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, Vol. 105, No. 32 ( 2008-08-12), p. 11418-11423
    Abstract: In this study, we demonstrate that fluid shear stress (FSS)-induced actin cytoskeletal reorganization and junctional formation in renal epithelial cells are nearly completely opposite the corresponding changes in vascular endothelial cells (ECs) [Thi MM et al. (2004) Proc Natl Acad Sci USA 101:16483–16488]. Mouse proximal tubule cells (PTCs) were subjected to 5 h of FSS (1 dyn/cm 2 ) to investigate the dynamic responses of the cytoskeletal distribution of filamentous actin (F-actin), ZO-1, E-cadherin, vinculin, and paxillin to FSS. Immunofluorescence analysis revealed that FSS caused basal stress fiber disruption, more densely distributed peripheral actin bands (DPABs), and the formation of both tight junctions (TJs) and adherens junctions (AJs). A dramatic reinforcement of vinculin staining was found at the cell borders as well as the cell interior. These responses were abrogated by the actin-disrupting drug, cytochalasin D. To interpret these results, we propose a “junctional buttressing” model for PTCs in which FSS enables the DPABs, TJs, and AJs to become more tightly connected. In contrast, in the “bumper-car” model for ECs, all junctional connections were severely disrupted by FSS. This “junctional buttressing” model explains why a FSS of only 1/10 of that used in the EC study can cause a similarly dramatic, cytoskeletal response in these tall, cuboidal epithelial cells; and why junctional buttressing between adjacent cells may benefit renal epithelium in maximizing flow-activated, brush border-dependent, transcellular salt and water reabsorption.
    Type of Medium: Online Resource
    ISSN: 0027-8424 , 1091-6490
    RVK:
    RVK:
    Language: English
    Publisher: Proceedings of the National Academy of Sciences
    Publication Date: 2008
    detail.hit.zdb_id: 209104-5
    detail.hit.zdb_id: 1461794-8
    SSG: 11
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...