GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Diesmann, Markus  (2)
  • Linguistics  (2)
  • 1
    Online Resource
    Online Resource
    American Association for the Advancement of Science (AAAS) ; 1997
    In:  Science Vol. 278, No. 5345 ( 1997-12-12), p. 1950-1953
    In: Science, American Association for the Advancement of Science (AAAS), Vol. 278, No. 5345 ( 1997-12-12), p. 1950-1953
    Abstract: It is now commonly accepted that planning and execution of movements are based on distributed processing by neuronal populations in motor cortical areas. It is less clear, though, how these populations organize dynamically to cope with the momentary computational demands. Simultaneously recorded activities of neurons in the primary motor cortex of monkeys during performance of a delayed-pointing task exhibited context-dependent, rapid changes in the patterns of coincident action potentials. Accurate spike synchronization occurred in relation to external events (stimuli, movements) and was commonly accompanied by discharge rate modulations but without precise time locking of the spikes to these external events. Spike synchronization also occurred in relation to purely internal events (stimulus expectancy), where firing rate modulations were distinctly absent. These findings indicate that internally generated synchronization of individual spike discharges may subserve the cortical organization of cognitive motor processes.
    Type of Medium: Online Resource
    ISSN: 0036-8075 , 1095-9203
    RVK:
    RVK:
    Language: English
    Publisher: American Association for the Advancement of Science (AAAS)
    Publication Date: 1997
    detail.hit.zdb_id: 128410-1
    detail.hit.zdb_id: 2066996-3
    detail.hit.zdb_id: 2060783-0
    SSG: 11
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    Proceedings of the National Academy of Sciences ; 2019
    In:  Proceedings of the National Academy of Sciences Vol. 116, No. 26 ( 2019-06-25), p. 13051-13060
    In: Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, Vol. 116, No. 26 ( 2019-06-25), p. 13051-13060
    Abstract: Cortical networks that have been found to operate close to a critical point exhibit joint activations of large numbers of neurons. However, in motor cortex of the awake macaque monkey, we observe very different dynamics: massively parallel recordings of 155 single-neuron spiking activities show weak fluctuations on the population level. This a priori suggests that motor cortex operates in a noncritical regime, which in models, has been found to be suboptimal for computational performance. However, here, we show the opposite: The large dispersion of correlations across neurons is the signature of a second critical regime. This regime exhibits a rich dynamical repertoire hidden from macroscopic brain signals but essential for high performance in such concepts as reservoir computing. An analytical link between the eigenvalue spectrum of the dynamics, the heterogeneity of connectivity, and the dispersion of correlations allows us to assess the closeness to the critical point.
    Type of Medium: Online Resource
    ISSN: 0027-8424 , 1091-6490
    RVK:
    RVK:
    Language: English
    Publisher: Proceedings of the National Academy of Sciences
    Publication Date: 2019
    detail.hit.zdb_id: 209104-5
    detail.hit.zdb_id: 1461794-8
    SSG: 11
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...