GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    Society for Neuroscience ; 2012
    In:  The Journal of Neuroscience Vol. 32, No. 10 ( 2012-03-07), p. 3398-3404
    In: The Journal of Neuroscience, Society for Neuroscience, Vol. 32, No. 10 ( 2012-03-07), p. 3398-3404
    Abstract: Endocytosis overshoot, which retrieves more membrane than vesicles just being exocytosed, occurs at nerve terminals and non-neuronal secretory cells. The mechanism that retrieves the overshoot membrane pool and the role of this pool remain largely unknown. We addressed this issue at the rat calyx of Held nerve terminal with capacitance measurements. We found that every calyx contained an overshoot pool ∼1.8 times the readily releasable pool. Retrieval of this pool required large calcium influx, and was inhibited by blockers of calcium/calmodulin-activated calcineurin and dynamin, suggesting the involvement of calcineurin and dynamin in endocytosis overshoot. Depletion of the overshoot pool slowed down compensatory endocytosis, whereas recovery of the overshoot pool via exocytosis that deposited stranded vesicles to the plasma membrane led to recovery of compensatory endocytosis, suggesting that the overshoot pool enhances endocytosis efficiency. These results suggest that the overshoot pool exists at every nerve terminal, is of limited size arising from vesicles stranded at the plasma membrane, is retrieved via calcium/calmodulin/calcineurin and dynamin signaling pathway, and can enhance endocytosis efficiency. Potential mechanisms for how the endocytosis overshoot pool enhances endocytosis efficiency are discussed.
    Type of Medium: Online Resource
    ISSN: 0270-6474 , 1529-2401
    Language: English
    Publisher: Society for Neuroscience
    Publication Date: 2012
    detail.hit.zdb_id: 1475274-8
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    Proceedings of the National Academy of Sciences ; 2000
    In:  Proceedings of the National Academy of Sciences Vol. 97, No. 7 ( 2000-03-28), p. 3272-3275
    In: Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, Vol. 97, No. 7 ( 2000-03-28), p. 3272-3275
    Abstract: Females of most animal species are usually inseminated by more than one male, which allows sperm from different males to compete for fertilization. To prevent invasion of sperm from other males, Drosophila males elicit a rejection behavior in their mates after copulation. Using paired mutant males that, for the lack of accessory glands, are sterile, we show that this rejection behavior is induced exclusively by the secreted accessory gland products transferred to the female during copulation. Moreover, the activities of sperm and accessory gland products are complementary and interdependent: both sperm fertility and rejection behavior depend on accessory gland products whose prolonged activities, in turn, require the presence of sperm. Fertility of sperm from paired males can be restored by accessory gland products of spermless males in “copulation complementation” experiments. Our observations may have important implications for the role of sexual behavior in evolution and for the treatment of male sexual dysfunction in humans.
    Type of Medium: Online Resource
    ISSN: 0027-8424 , 1091-6490
    RVK:
    RVK:
    Language: English
    Publisher: Proceedings of the National Academy of Sciences
    Publication Date: 2000
    detail.hit.zdb_id: 209104-5
    detail.hit.zdb_id: 1461794-8
    SSG: 11
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    Proceedings of the National Academy of Sciences ; 2018
    In:  Proceedings of the National Academy of Sciences Vol. 115, No. 9 ( 2018-02-27), p. 2150-2155
    In: Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, Vol. 115, No. 9 ( 2018-02-27), p. 2150-2155
    Abstract: The Hippo signaling pathway is a master regulator of organ growth, tissue homeostasis, and tumorigenesis. The activity of the Hippo pathway is controlled by various upstream components, including Expanded (Ex), but the precise molecular mechanism of how Ex is regulated remains poorly understood. Here we identify Plenty of SH3s (POSH), an E3 ubiquitin ligase, as a key component of Hippo signaling in Drosophila . POSH overexpression synergizes with loss of Kibra to induce overgrowth and up-regulation of Hippo pathway target genes. Furthermore, knockdown of POSH impedes dextran sulfate sodium-induced Yorkie-dependent intestinal stem cell renewal, suggesting a physiological role of POSH in modulating Hippo signaling. Mechanistically, POSH binds to the C-terminal of Ex and is essential for the Crumbs-induced ubiquitination and degradation of Ex. Our findings establish POSH as a crucial regulator that integrates the signal from the cell surface to negatively regulate Ex-mediated Hippo activation in Drosophila .
    Type of Medium: Online Resource
    ISSN: 0027-8424 , 1091-6490
    RVK:
    RVK:
    Language: English
    Publisher: Proceedings of the National Academy of Sciences
    Publication Date: 2018
    detail.hit.zdb_id: 209104-5
    detail.hit.zdb_id: 1461794-8
    SSG: 11
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 4
    Online Resource
    Online Resource
    Proceedings of the National Academy of Sciences ; 2015
    In:  Proceedings of the National Academy of Sciences Vol. 112, No. 4 ( 2015-01-27), p. 1065-1070
    In: Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, Vol. 112, No. 4 ( 2015-01-27), p. 1065-1070
    Abstract: The Hippo and c-Jun N-terminal kinase (JNK) pathway both regulate growth and contribute to tumorigenesis when dysregulated. Whereas the Hippo pathway acts via the transcription coactivator Yki/YAP to regulate target gene expression, JNK signaling, triggered by various modulators including Rho GTPases, activates the transcription factors Jun and Fos. Here, we show that impaired Hippo signaling induces JNK activation through Rho1. Blocking Rho1–JNK signaling suppresses Yki-induced overgrowth in the wing disk, whereas ectopic Rho1 expression promotes tissue growth when apoptosis is prohibited. Furthermore, Yki directly regulates Rho1 transcription via the transcription factor Sd. Thus, our results have identified a novel molecular link between the Hippo and JNK pathways and implicated the essential role of the JNK pathway in Hippo signaling-related tumorigenesis.
    Type of Medium: Online Resource
    ISSN: 0027-8424 , 1091-6490
    RVK:
    RVK:
    Language: English
    Publisher: Proceedings of the National Academy of Sciences
    Publication Date: 2015
    detail.hit.zdb_id: 209104-5
    detail.hit.zdb_id: 1461794-8
    SSG: 11
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 5
    In: Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, Vol. 118, No. 23 ( 2021-06-08)
    Abstract: Intrinsic mechanisms such as temporal series of transcription factors orchestrate neurogenesis from a limited number of neural progenitors in the brain. Extrinsic regulations, however, remain largely unexplored. Here we describe a two-step glia-derived signal that regulates neurogenesis in the Drosophila mushroom body (MB). In a temporal manner, glial-specific ubiquitin ligase dSmurf activates non–cell-autonomous Hedgehog signaling propagation by targeting the receptor Patched to suppress and promote the exit of MB neuroblast (NB) proliferation, thereby specifying the correct α/β cell number without affecting differentiation. Independent of NB proliferation, dSmurf also stabilizes the expression of the cell-adhesion molecule Fasciclin II (FasII) via its WW domains and regulates FasII homophilic interaction between glia and MB axons to refine α/β-lobe integrity. Our findings provide insights into how extrinsic glia-to-neuron communication coordinates with NB proliferation capacity to regulate MB neurogenesis; glial proteostasis is likely a generalized mechanism in orchestrating neurogenesis.
    Type of Medium: Online Resource
    ISSN: 0027-8424 , 1091-6490
    RVK:
    RVK:
    Language: English
    Publisher: Proceedings of the National Academy of Sciences
    Publication Date: 2021
    detail.hit.zdb_id: 209104-5
    detail.hit.zdb_id: 1461794-8
    SSG: 11
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 6
    In: Science, American Association for the Advancement of Science (AAAS), Vol. 323, No. 5918 ( 2009-02-27), p. 1218-1222
    Abstract: We constructed a large-scale functional network model in Drosophila melanogaster built around two key transcription factors involved in the process of embryonic segmentation. Analysis of the model allowed the identification of a new role for the ubiquitin E3 ligase complex factor SPOP. In Drosophila , the gene encoding SPOP is a target of segmentation transcription factors. Drosophila SPOP mediates degradation of the Jun kinase phosphatase Puckered, thereby inducing tumor necrosis factor (TNF)/Eiger–dependent apoptosis. In humans, we found that SPOP plays a conserved role in TNF-mediated JNK signaling and was highly expressed in 99% of clear cell renal cell carcinomas (RCCs), the most prevalent form of kidney cancer. SPOP expression distinguished histological subtypes of RCC and facilitated identification of clear cell RCC as the primary tumor for metastatic lesions.
    Type of Medium: Online Resource
    ISSN: 0036-8075 , 1095-9203
    RVK:
    RVK:
    Language: English
    Publisher: American Association for the Advancement of Science (AAAS)
    Publication Date: 2009
    detail.hit.zdb_id: 128410-1
    detail.hit.zdb_id: 2066996-3
    detail.hit.zdb_id: 2060783-0
    SSG: 11
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 7
    Online Resource
    Online Resource
    Society for Neuroscience ; 2020
    In:  The Journal of Neuroscience Vol. 40, No. 42 ( 2020-10-14), p. 8070-8087
    In: The Journal of Neuroscience, Society for Neuroscience, Vol. 40, No. 42 ( 2020-10-14), p. 8070-8087
    Abstract: Brain-derived neurotropic factor (BDNF) has been shown to play critical roles in neural development, plasticity, and neurodegenerative diseases. The main function of BDNF in the brain is widely accepted to be synaptic regulation. However, how BDNF modulates synaptic transmission, especially the underlying signaling cascades between presynaptic and postsynaptic neurons, remains controversial. In the present study, we investigated the actions of BDNF at rat calyx-type synapses of either sex by measuring the excitatory postsynaptic current (EPSC) and presynaptic calcium current and capacitance changes. We found that BDNF inhibits the EPSC, presynaptic calcium influx, and exocytosis/endocytosis via activation of the presynaptic cannabinoid Type 1 receptors (CB1Rs). Inhibition of the CB1Rs abolished the BDNF-induced presynaptic inhibition, whereas CB1R agonist mimicked the effect of BDNF. Exploring the underlying signaling cascade, we found that BDNF specifically activates the postsynaptic TrkB receptors, inducing the release of endocannabinoids via the PLCγ/DGL pathway and retrogradely activating presynaptic CB1Rs. We also reported the involvement of AC/PKA in modulating vesicle endocytosis, which may account for the BDNF-induced calcium-dependent and -independent regulation of endocytosis. Thus, our study provides new insights into the BDNF/endocannabinoid-associated modulation of neurotransmission in physiological and pathologic processes. SIGNIFICANCE STATEMENT BDNF plays critical roles in the modulation of synaptic strength. However, how BDNF regulates synaptic transmission and its underlying signaling cascade(s) remains elusive. By measuring EPSC and the presynaptic calcium current and capacitance changes at rat calyces, we found that BDNF inhibits synaptic transmission via BDNF-TrkB-eCB signaling pathway. Activation of postsynaptic TrkB receptors induces endocannabinoid release via the PLCγ/DGL pathway, retrogradely activating the presynaptic CB1Rs, inhibiting the AC/PKA, and suppressing calcium influx. Our findings provide a comprehensive understanding of BDNF/endocannabinoid-associated modulation of neuronal activities.
    Type of Medium: Online Resource
    ISSN: 0270-6474 , 1529-2401
    Language: English
    Publisher: Society for Neuroscience
    Publication Date: 2020
    detail.hit.zdb_id: 1475274-8
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 8
    Online Resource
    Online Resource
    Proceedings of the National Academy of Sciences ; 2020
    In:  Proceedings of the National Academy of Sciences Vol. 117, No. 48 ( 2020-12), p. 30520-30530
    In: Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, Vol. 117, No. 48 ( 2020-12), p. 30520-30530
    Abstract: The Hippo pathway is an evolutionarily conserved regulator of organ growth and tumorigenesis. In Drosophila , oncogenic Ras V12 cooperates with loss-of-cell polarity to promote Hippo pathway-dependent tumor growth. To identify additional factors that modulate this signaling, we performed a genetic screen utilizing the Drosophila Ras V12 /lgl −/− in vivo tumor model and identified Rox8, a RNA-binding protein (RBP), as a positive regulator of the Hippo pathway. We found that Rox8 overexpression suppresses whereas Rox8 depletion potentiates Hippo-dependent tissue overgrowth, accompanied by altered Yki protein level and target gene expression. Mechanistically, Rox8 directly binds to a target site located in the yki 3′ UTR, recruits and stabilizes the targeting of miR-8–loaded RISC, which accelerates the decay of yki messenger RNA (mRNA). Moreover, TIAR, the human ortholog of Rox8, is able to promote the degradation of yki mRNA when introduced into Drosophila and destabilizes YAP mRNA in human cells. Thus, our study provides in vivo evidence that the Hippo pathway is posttranscriptionally regulated by the collaborative action of RBP and microRNA (miRNA), which may provide an approach for modulating Hippo pathway-mediated tumorigenesis.
    Type of Medium: Online Resource
    ISSN: 0027-8424 , 1091-6490
    RVK:
    RVK:
    Language: English
    Publisher: Proceedings of the National Academy of Sciences
    Publication Date: 2020
    detail.hit.zdb_id: 209104-5
    detail.hit.zdb_id: 1461794-8
    SSG: 11
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 9
    Online Resource
    Online Resource
    Proceedings of the National Academy of Sciences ; 2022
    In:  Proceedings of the National Academy of Sciences Vol. 119, No. 42 ( 2022-10-18)
    In: Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, Vol. 119, No. 42 ( 2022-10-18)
    Abstract: Unfolded protein response (UPR) is the mechanism by which cells control endoplasmic reticulum (ER) protein homeostasis. ER proteostasis is essential to adapt to cell proliferation and regeneration in development and tumorigenesis, but mechanisms linking UPR, growth control, and cancer progression remain unclear. Here, we report that the Ire1/Xbp1s pathway has surprisingly oncogenic and tumor-suppressive roles in a context-dependent manner. Activation of Ire1/Xbp1s up-regulates their downstream target Bip, which sequesters Yorkie (Yki), a Hippo pathway transducer, in the cytoplasm to restrict Yki transcriptional output. This regulation provides an endogenous defensive mechanism in organ size control, intestinal homeostasis, and regeneration. Unexpectedly, Xbp1 ablation promotes tumor overgrowth but suppresses invasiveness in a Drosophila cancer model. Mechanistically, hyperactivated Ire1/Xbp1s signaling in turn induces JNK-dependent developmental and oncogenic cell migration and epithelial-mesenchymal transition (EMT) via repression of Yki. In humans, a negative correlation between XBP1 and YAP (Yki ortholog) target gene expression specifically exists in triple-negative breast cancers (TNBCs), and those with high XBP1 or HSPA5 (Bip ortholog) expression have better clinical outcomes. In human TNBC cell lines and xenograft models, ectopic XBP1s or HSPA5 expression alleviates tumor growth but aggravates cell migration and invasion. These findings uncover a conserved crosstalk between the Ire1/Xbp1s and Hippo signaling pathways under physiological settings, as well as a crucial role of Bip-Yki interaction in tumorigenesis that is shared from Drosophila to humans.
    Type of Medium: Online Resource
    ISSN: 0027-8424 , 1091-6490
    RVK:
    RVK:
    Language: English
    Publisher: Proceedings of the National Academy of Sciences
    Publication Date: 2022
    detail.hit.zdb_id: 209104-5
    detail.hit.zdb_id: 1461794-8
    SSG: 11
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 10
    Online Resource
    Online Resource
    Society for Neuroscience ; 2013
    In:  The Journal of Neuroscience Vol. 33, No. 20 ( 2013-05-15), p. 8820-8826
    In: The Journal of Neuroscience, Society for Neuroscience, Vol. 33, No. 20 ( 2013-05-15), p. 8820-8826
    Abstract: Studies over the last decade using FM dyes to label vesicles at many terminals, including the calyx-type nerve terminal, led to a well accepted “principle” that only a small fraction of vesicles (∼5–20%) participate in recycling under physiological conditions. This principle imposes a large challenge in maintaining synaptic transmission during repetitive firing, because the small recycling pool may limit the number of available vesicles for release and nerve terminals would have to distinguish the recycling pool from the reserve pool and keep reserve pool vesicles from being used. By recording the presynaptic capacitance changes and the postsynaptic EPSC at rat calyx of Held synapses in the absence or presence of transmitter glutamate in nerve terminals, we developed a new method to count functional recycling vesicles. We found that essentially all vesicles in calyces participated in recycling, challenging the small-recycling-pool principle established by FM dye labeling. Nerve terminals may use all available vesicles to maximize their ability in maintaining synaptic transmission during repetitive firing.
    Type of Medium: Online Resource
    ISSN: 0270-6474 , 1529-2401
    Language: English
    Publisher: Society for Neuroscience
    Publication Date: 2013
    detail.hit.zdb_id: 1475274-8
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...