GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Cartography and geographic base data  (1)
Material
Publisher
Language
Years
FID
  • Cartography and geographic base data  (1)
  • 1
    Online Resource
    Online Resource
    MDPI AG ; 2023
    In:  ISPRS International Journal of Geo-Information Vol. 12, No. 5 ( 2023-05-13), p. 197-
    In: ISPRS International Journal of Geo-Information, MDPI AG, Vol. 12, No. 5 ( 2023-05-13), p. 197-
    Abstract: Landslide susceptibility assessment (LSA) based on machine learning methods has been widely used in landslide geological hazard management and research. However, the problem of sample imbalance in landslide susceptibility assessment, where landslide samples tend to be much smaller than non-landslide samples, is often overlooked. This problem is often one of the important factors affecting the performance of landslide susceptibility models. In this paper, we take the Wanzhou district of Chongqing city as an example, where the total number of data sets is more than 580,000 and the ratio of positive to negative samples is 1:19. We oversample or undersample the unbalanced landslide samples to make them balanced, and then compare the performance of machine learning models with different sampling strategies. Three classic machine learning algorithms, logistic regression, random forest and LightGBM, are used for LSA modeling. The results show that the model trained directly using the unbalanced sample dataset performs the worst, showing an extremely low recall rate, indicating that its predictive ability for landslide samples is extremely low and cannot be applied in practice. Compared with the original dataset, the sample set optimized through certain methods has demonstrated improved predictive performance across various classifiers, manifested in the improvement of AUC value and recall rate. The best model was the random forest model using over-sampling (O_RF) (AUC = 0.932).
    Type of Medium: Online Resource
    ISSN: 2220-9964
    Language: English
    Publisher: MDPI AG
    Publication Date: 2023
    detail.hit.zdb_id: 2655790-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...