GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • MDPI AG  (2)
  • Li, Jie  (2)
  • Cartography and geographic base data  (2)
Material
Publisher
  • MDPI AG  (2)
Language
Years
FID
  • Cartography and geographic base data  (2)
  • 1
    Online Resource
    Online Resource
    MDPI AG ; 2020
    In:  ISPRS International Journal of Geo-Information Vol. 9, No. 4 ( 2020-03-26), p. 194-
    In: ISPRS International Journal of Geo-Information, MDPI AG, Vol. 9, No. 4 ( 2020-03-26), p. 194-
    Abstract: When a landslide happens, it is important to recognize the hazard-affected bodies surrounding the landslide for the risk assessment and emergency rescue. In order to realize the recognition, the spatial relationship between landslides and other geographic objects such as residence, roads and schools needs to be defined. Comparing with semantic segmentation and instance segmentation that can only recognize the geographic objects separately, image captioning can provide richer semantic information including the spatial relationship among these objects. However, the traditional image captioning methods based on RNNs have two main shortcomings: the errors in the prediction process are often accumulated and the location of attention is not always accurate which would lead to misjudgment of risk. To handle these problems, a landslide image interpretation network based on a semantic gate and a bi-temporal long-short term memory network (SG-BiTLSTM) is proposed in this paper. In the SG-BiTLSTM architecture, a U-Net is employed as an encoder to extract features of the images and generate the mask maps of the landslides and other geographic objects. The decoder of this structure consists of two interactive long-short term memory networks (LSTMs) to describe the spatial relationship among these geographic objects so that to further determine the role of the classified geographic objects for identifying the hazard-affected bodies. The purpose of this research is to judge the hazard-affected bodies of the landslide (i.e., buildings and roads) through the SG-BiTLSTM network to provide geographic information support for emergency service. The remote sensing data was taken by Worldview satellite after the Wenchuan earthquake happened in 2008. The experimental results demonstrate that SG-BiTLSTM network shows remarkable improvements on the recognition of landslide and hazard-affected bodies, compared with the traditional LSTM (the Baseline Model), the BLEU1 of the SG-BiTLSTM is improved by 5.89%, the matching rate between the mask maps and the focus matrix of the attention is improved by 42.81%. In conclusion, the SG-BiTLSTM network can recognize landslides and the hazard-affected bodies simultaneously to provide basic geographic information service for emergency decision-making.
    Type of Medium: Online Resource
    ISSN: 2220-9964
    Language: English
    Publisher: MDPI AG
    Publication Date: 2020
    detail.hit.zdb_id: 2655790-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    MDPI AG ; 2019
    In:  ISPRS International Journal of Geo-Information Vol. 8, No. 9 ( 2019-09-17), p. 417-
    In: ISPRS International Journal of Geo-Information, MDPI AG, Vol. 8, No. 9 ( 2019-09-17), p. 417-
    Abstract: Remote sensing image captioning involves remote sensing objects and their spatial relationships. However, it is still difficult to determine the spatial extent of a remote sensing object and the size of a sample patch. If the patch size is too large, it will include too many remote sensing objects and their complex spatial relationships. This will increase the computational burden of the image captioning network and reduce its precision. If the patch size is too small, it often fails to provide enough environmental and contextual information, which makes the remote sensing object difficult to describe. To address this problem, we propose a multi-scale semantic long short-term memory network (MS-LSTM). The remote sensing images are paired into image patches with different spatial scales. First, the large-scale patches have larger sizes. We use a Visual Geometry Group (VGG) network to extract the features from the large-scale patches and input them into the improved MS-LSTM network as the semantic information, which provides a larger receptive field and more contextual semantic information for small-scale image caption so as to play the role of global perspective, thereby enabling the accurate identification of small-scale samples with the same features. Second, a small-scale patch is used to highlight remote sensing objects and simplify their spatial relations. In addition, the multi-receptive field provides perspectives from local to global. The experimental results demonstrated that compared with the original long short-term memory network (LSTM), the MS-LSTM’s Bilingual Evaluation Understudy (BLEU) has been increased by 5.6% to 0.859, thereby reflecting that the MS-LSTM has a more comprehensive receptive field, which provides more abundant semantic information and enhances the remote sensing image captions.
    Type of Medium: Online Resource
    ISSN: 2220-9964
    Language: English
    Publisher: MDPI AG
    Publication Date: 2019
    detail.hit.zdb_id: 2655790-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...