GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Online Resource  (1)
  • Jewish studies  (1)
Material
  • Online Resource  (1)
Publisher
Person/Organisation
Language
Years
FID
  • Jewish studies  (1)
  • 1
    Online Resource
    Online Resource
    Wiley ; 2014
    In:  Israel Journal of Chemistry Vol. 54, No. 8-9 ( 2014-08), p. 1084-1092
    In: Israel Journal of Chemistry, Wiley, Vol. 54, No. 8-9 ( 2014-08), p. 1084-1092
    Abstract: Experimental protein structures provide spatial information at the atomic level. A further dimension, time, is supplemented by molecular dynamics. Since the pioneering work on the 58‐residue inhibitor of bovine pancreatic trypsin in the group of Martin Karplus in the seventies, molecular dynamics simulations have shown that the intrinsic flexibility of proteins is essential for their function. Here, we review simulation studies of bromodomains. These protein modules are involved in the recognition of acetylated lysine side chains, a post‐translational modification frequently observed in histone tails. The molecular dynamics simulations have unmasked: (i) the large plasticity of the loops lining the acetyl‐lysine binding site (coupled to its self‐occlusion), and (ii) multiple binding modes of acetyl‐lysine. These simulation results suggest that recognition of histone tails by bromodomains is modulated by their intrinsic flexibility, and further corroborate the utility of molecular dynamics in understanding (macro)molecular recognition.
    Type of Medium: Online Resource
    ISSN: 0021-2148 , 1869-5868
    URL: Issue
    Language: English
    Publisher: Wiley
    Publication Date: 2014
    detail.hit.zdb_id: 2066481-3
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...