GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Biodiversity Research  (3)
  • 1
    Online Resource
    Online Resource
    Walter de Gruyter GmbH ; 2021
    In:  Biological Chemistry Vol. 402, No. 8 ( 2021-07-27), p. 871-885
    In: Biological Chemistry, Walter de Gruyter GmbH, Vol. 402, No. 8 ( 2021-07-27), p. 871-885
    Abstract: Using results from genome-wide association studies for understanding complex traits is a current challenge. Here we review how genotype data can be used with different machine learning (ML) methods to predict phenotype occurrence and severity from genotype data. We discuss common feature encoding schemes and how studies handle the often small number of samples compared to the huge number of variants. We compare which ML methods are being applied, including recent results using deep neural networks. Further, we review the application of methods for feature explanation and interpretation.
    Type of Medium: Online Resource
    ISSN: 1431-6730 , 1437-4315
    Language: English
    Publisher: Walter de Gruyter GmbH
    Publication Date: 2021
    detail.hit.zdb_id: 1466062-3
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    Springer Science and Business Media LLC ; 2022
    In:  BMC Bioinformatics Vol. 23, No. 1 ( 2022-12-12)
    In: BMC Bioinformatics, Springer Science and Business Media LLC, Vol. 23, No. 1 ( 2022-12-12)
    Abstract: Medical databases normally contain large amounts of data in a variety of forms. Although they grant significant insights into diagnosis and treatment, implementing data exploration into current medical databases is challenging since these are often based on a relational schema and cannot be used to easily extract information for cohort analysis and visualization. As a consequence, valuable information regarding cohort distribution or patient similarity may be missed. With the rapid advancement of biomedical technologies, new forms of data from methods such as Next Generation Sequencing (NGS) or chromosome microarray (array CGH) are constantly being generated; hence it can be expected that the amount and complexity of medical data will rise and bring relational database systems to a limit. Description We present Graph4Med, a web application that relies on a graph database obtained by transforming a relational database. Graph4Med provides a straightforward visualization and analysis of a selected patient cohort. Our use case is a database of pediatric Acute Lymphoblastic Leukemia (ALL). Along routine patients’ health records it also contains results of latest technologies such as NGS data. We developed a suitable graph data schema to convert the relational data into a graph data structure and store it in Neo4j. We used NeoDash to build a dashboard for querying and displaying patients’ cohort analysis. This way our tool (1) quickly displays the overview of patients’ cohort information such as distributions of gender, age, mutations (fusions), diagnosis; (2) provides mutation (fusion) based similarity search and display in a maneuverable graph; (3) generates an interactive graph of any selected patient and facilitates the identification of interesting patterns among patients. Conclusion We demonstrate the feasibility and advantages of a graph database for storing and querying medical databases. Our dashboard allows a fast and interactive analysis and visualization of complex medical data. It is especially useful for patients similarity search based on mutations (fusions), of which vast amounts of data have been generated by NGS in recent years. It can discover relationships and patterns in patients cohorts that are normally hard to grasp. Expanding Graph4Med to more medical databases will bring novel insights into diagnostic and research.
    Type of Medium: Online Resource
    ISSN: 1471-2105
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2022
    detail.hit.zdb_id: 2041484-5
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    Springer Science and Business Media LLC ; 2023
    In:  BMC Bioinformatics Vol. 24, No. 1 ( 2023-04-17)
    In: BMC Bioinformatics, Springer Science and Business Media LLC, Vol. 24, No. 1 ( 2023-04-17)
    Abstract: Gene expression profiling is a widely adopted method in areas like drug development or functional gene analysis. Microarray data of gene expression experiments is still commonly used and widely available for retrospective analyses. However, due to to changes of the underlying technologies data sets from different technologies are often difficult to compare and thus a multitude of already available data becomes difficult to use. We present a web application that abstracts away mathematical and programmatical details in order to enable a convenient and customizable analysis of microarray data for large-scale reproducibility studies. In addition, the web application provides a feature that allows easy access to large microarray repositories. Results Our web application consists of three basic steps which are necessary for a differential gene expression analysis as well as Gene Ontology (GO) enrichment analysis and the comparison of multiple analysis results. Genealyzer can handle Affymetrix data as well as one-channel and two-channel Agilent data. All steps are visualized with meaningful plots. The application offers flexible analysis while being intuitively operable. Conclusions Our web application provides a unified platform for analysing microarray data, while allowing users to compare the results of different technologies and organisms. Beyond reproducibility, this also offers many possibilities for gaining further insights from existing study data, especially since data from different technologies or organisms can also be compared. The web application can be accessed via this URL: https://genealyzer.item.fraunhofer.de/ . Login credentials can be found at the end.
    Type of Medium: Online Resource
    ISSN: 1471-2105
    Language: English
    Publisher: Springer Science and Business Media LLC
    Publication Date: 2023
    detail.hit.zdb_id: 2041484-5
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...