GLORIA

GEOMAR Library Ocean Research Information Access

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Biodiversity Research  (1)
Material
Language
Years
FID
  • Biodiversity Research  (1)
  • 1
    Online Resource
    Online Resource
    Cambridge University Press (CUP) ; 2023
    In:  Plant Genetic Resources: Characterization and Utilization Vol. 21, No. 3 ( 2023-06), p. 218-228
    In: Plant Genetic Resources: Characterization and Utilization, Cambridge University Press (CUP), Vol. 21, No. 3 ( 2023-06), p. 218-228
    Abstract: Soil moisture deficit is the major constraint for sesame crop production during its main rainfed and summer cultivation seasons. In summer cultivation, the crop frequently gets exposed to soil moisture deficit at various crop growth stages. Therefore, it is essential to identify the traits along with promising genotypes adapted to soil moisture deficit. A set of 35 sesame genotypes with checks was used to quantify the variation in morpho-physiological, yield, and quality traits under irrigated (WW) and deficit soil moisture stress (WS) conditions in the summer seasons of 2021 and 2022. The analysis of variance revealed the presence of high variability among the genotypes for various measured traits. The mean performance indicated that WS negatively affects the growth, development, yield and quality traits. Moreover, the correlation, path analysis and D 2 analysis studies suggested that the traits, viz. leaf area (LA), total dry matter (TDM), canopy temperature (CT), number of branches per plant (NBP) and number of seeds per capsule (NSC) were significantly associated with seed yield under both the conditions. Quality traits like palmitic acid and oleic acid correlated positively with seed yield, particularly under WS. Furthermore, the genotypes with lower canopy temperatures were found to be better seed yielders under WS. In addition, mean performance and cluster analysis suggested that the genotypes: IC- 205776, JSCDT-112, JCSDT-26, IC-205610, and IC-204300, secured higher seed yield along with superior agronomical traits and net photosynthetic rate. These selected genotypes were most promising and could be used in future sesame crop improvement programmes.
    Type of Medium: Online Resource
    ISSN: 1479-2621 , 1479-263X
    Language: English
    Publisher: Cambridge University Press (CUP)
    Publication Date: 2023
    detail.hit.zdb_id: 2180556-8
    SSG: 12
    Location Call Number Limitation Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...